
The Journal of Systems and Software 219 (2025) 112226 

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Symbolic testing of floating-point bugs and exceptions✩

Dongyu Ma a,1, Zeyu Liang b,1, Luming Yin a, Hongliang Liang a,∗

a Beijing University of Posts and Telecommunications, China
b University of California San Diego, United States of America

A R T I C L E I N F O

Keywords:
Numerical software
Floating-point exceptions and bugs
Symbolic execution

A B S T R A C T

Numerical software are susceptible to floating-point bugs and exceptions, which may lead to severe threats like
denial of service attacks. Static analysis techniques such as symbolic execution are effective in detecting general
bugs which often cause memory error or program crash. Unfortunately, these methods do not deal well with
numerical code as they do not support floating-point constraints and math functions symbolically. In this paper,
we propose a new analysis framework YUSE, which can detect floating-point bugs by constructing constraints
and exploring paths which contain floating-point expressions. Specifically, we introduce interval computation
and interval constraint propagation in non-relational numerical abstract domains, and symbolically model math
functions, to accurately detect floating-point bugs and exceptions. Moreover, we leverage two-phase constraint
solving to enhance YUSE’s performance. Experimental results show that YUSE outperforms two state-of-the-art
tools, Frama-c and Fpse-study, in terms of effectiveness and efficiency, with 1.4× and 7.1× faster than Frama-c
and Fpse-study, respectively. Moreover, YUSE found 20 new bugs in real-world software, 12 of which were
assigned CVE IDs and 8 of which were confirmed by developers.
1. Introduction

Numerical software plays a critical role in many fields such as
scientific computing, smart home appliances, and national defense.
However, bugs in these programs can lead to severe consequences. For
example, floating-point arithmetic errors caused Patriot missile system
failure during the Gulf War of 1991 (Patriot, 1992), and in 2016 a
floating-point to integer overflow led to the failure of European Space
Agency’s Ariane 5 rocket (ARIANE, 1996).

In this paper, we aim to detect those floating-point bugs and ex-
ceptions which consist of (1) general bugs, e.g., use-after-free or buffer
overflow, guarded by conditions involving floating-point operations
or math functions; (2) floating-point exceptions caused by floating-
point operations or math functions. Many approaches and tools have
been developed to detect software bugs. Yet, they often struggle with
accuracy and speed, especially in detecting floating-point bugs and
exceptions (Barr et al., 2013; Kirchner et al., 2015; Zhang et al., 2022;
Wu et al., 2016; Dinda et al., 2020; Cousot et al., 2005). For instance,
Frama-c (Kirchner et al., 2015) can identify potential floating-point
bugs and exceptions by utilizing abstract interpretation, however, it
fails to distinguish implicit and explicit type conversions, leading to
lots of false positives. Additionally, it does not deal well with calls
of math functions and complex floating-point expressions, resulting in

✩ Editor: Professor Yan Cai.
∗ Corresponding author.
E-mail address: hliang@bupt.edu.cn (H. Liang).

1 Equal contribution.

many false negatives. Moreover, in our preliminary experiment, we
found that its constraint solver eva is about 5× slower than the built-in
range constraint solver (Range, 2023) in Clang static analyzer (CSA for
short) (CSA, 2023). Based on symbolic execution and constraint solv-
ing, CSA (CSA, 2023) supports only integer and simple floating-point
constants and thus is unsuitable for numerical bug detection. Fpse-
study (Zhang et al., 2022) aims to analyze floating-point programs by
using symbolic execution, but also suffers from calls of math functions
and complex floating-point expressions, resulting in both false positives
and negatives. Moreover, the Z3 solver (de Moura and Bjørner, 2008;
Z3, 2023) used in Fpse-study is about 20× slower than range constraint
solver (CSA, 2020).

To mitigate the above problems, we present a novel analysis frame-
work, YUSE, which is capable of detecting floating-point bugs and ex-
ceptions by constructing floating-point-related constraints and explor-
ing floating-point-related paths. Specifically, we first integrate floating-
point support into a symbolic execution engine. Second, we intro-
duce interval computation and interval constraint propagation in non-
relational numerical abstract domains (Anon, 2017) with the objective
of enhancing the precision of detecting floating-point bugs and excep-
tions. Third, we propose several techniques, i.e., mathematical function
https://doi.org/10.1016/j.jss.2024.112226
Received 2 April 2024; Received in revised form 7 September 2024; Accepted 22 S
vailable online 2 October 2024 
164-1212/© 2024 Elsevier Inc. All rights are reserved, including those for text and 
eptember 2024

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:hliang@bupt.edu.cn
https://doi.org/10.1016/j.jss.2024.112226
https://doi.org/10.1016/j.jss.2024.112226
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112226&domain=pdf


D. Ma et al.

𝑑
e

𝑓

a
U

G
i
w
o
s
D
w
f
a
w
i
I
t
Y
d

2

F

F
r
t
c
m
o

a
e
r
i
4
a
t

The Journal of Systems & Software 219 (2025) 112226 
modeling, interval binding and a two-phase constraint solving strategy,
to enhance the performance of our analysis framework.

In summary, our work makes the following contributions.

– We propose an analysis framework which can construct floating-
point related constraints and explore floating-point related paths
to detect floating-point bugs and exceptions.

– We introduce interval computation and interval constraint prop-
agation in non-relational numerical abstract domains, in order
to improve the accuracy of detecting floating-point bugs and
exceptions.

– We propose several techniques, i.e., math function modeling,
interval binding and a two-phase constraint solving strategy, to
enhance the performance of our analysis framework.

– We implemented the proposed approach in a tool called YUSE.
Evaluation on three real-world software, i.e., GSL, Sox and Mupdf,
shows that YUSE is more effective and efficient on floating-point
bug detection than two state-of-the-art tools, Frama-c and Fpse-
study. Specifically, YUSE is 1.4× and 7.1× faster than Frama-c
and Fpse-study, respectively, and found 12 bugs all of which were
assigned CVE IDs and 8 bugs all of which were confirmed by
corresponding developers. Our tool and benchmarks are publicly
available at: https://gitee.com/ma-dongyu/bupt_yuse.

The remainder of this paper is structured as follows. We present the
background of static symbolic execution and floating-point data, and
the motivating examples in Section 2. We describe the overview and
detailed design of YUSE in Sections 3 and 4 respectively. Section 5
provides the evaluation of YUSE in terms of its effectiveness and
efficiency. Related work is discussed in Sections 7, and 8 concludes.

2. Background & motivation

In this section, we first describe static symbolic execution and
floating-point data briefly. Next, we use two examples to illustrate
the limitations of existing static analysis tools in testing numerical
programs.

2.1. Static symbolic execution

Symbolic execution (King, 1976; Baldoni et al., 2018) is a pop-
ular program analysis technique to test whether certain properties
in software can be violated, for example, no division-by-zero is ever
performed, no NULL pointer is ever dereferenced, and so on. Symbolic
execution can simultaneously explore multiple paths that a program
could take under different inputs. Its key idea is to allow a program
to take on symbolic input values. Execution is performed by a symbolic
execution engine, which maintains for each explored control flow path:
a first-order Boolean formula that describes the conditions satisfied by
the branches taken along that path, and a symbolic memory store that
maps variables to symbolic expressions or values. Branch execution
updates the formula, while assignments update the symbolic store. A
satisfiability modulo theories (SMT) solver is typically used to verify
whether there are any violations of the property along each explored
path and if the path itself is realizable, i.e., if its formula can be satisfied
by some assignment of concrete values to the program’s symbolic
arguments.

Static symbolic execution is a static analysis technique that uses
symbolic values instead of concrete values to simulate program’s ex-
ecution. During simulating, the symbolic execution engine collects
semantic information and explores the reachable paths in the program
to analyze potential bugs. Compared to those dynamic methods like
fuzzing which run the target program with randomly generated in-
puts, static symbolic execution does not need to execute the program
actually, and thus not restricted by the potential complex runtime
environment. Besides, in the case of bug detection, search heuristics
may help prioritize some interesting paths and hence achieve high

efficiency and code coverage (Baldoni et al., 2018). g

2 
2.2. Floating-point data and exceptions

ISO/IEC 60559 does not define all aspects of a conforming program-
ming environment. Such behavior should be defined by a programming
language definition supporting this standard, if available, and oth-
erwise by a particular implementation. In this work we target the
x86_64 family of processors and C programming language, where three
primitive floating-point types are available: 32-bit wide single precision
(float), 64-bit wide double precision (double), and 80-bit wide double
extended precision (long double).

For a floating-point number, its binary representation consists of
sign bits, exponent bits, and mantissa bits. We can have addition,
subtraction, multiplication, division, fused multiply add, square root,
compare, and other operations on it. Floating-point exceptions are usu-
ally caused by illegal or incorrect operations on floating-point number,
which include division by zero, overflow, underflow, invalid operation,
and inexactness. Readers of interest can refer to ISO/IEC 60559 (ISO,
2020).

In general, a floating-point number 𝑓 is represented as ±𝑑0.𝑑1𝑑2 …
𝑝−1 × 𝛽𝑒, where 𝑑0.𝑑1𝑑2 … 𝑑𝑝−1 is the significand with 𝑝 digits. 𝑒 is the
xponent. Precisely, 𝑓 is defined as follows.

= ±(𝑑0 + 𝑑1𝛽
−1 +⋯ + 𝑑𝑝−1𝛽

−(𝑝−1)) × 𝛽𝑒, 0 < 𝑑𝑖 < 𝛽.

For a math function of 𝑓 , the deviation between its finite-bit output
nd the exact result can be quantified in ‘‘units in last place’’ or
LPs (Goldberg, 1991).

Different computing architectures, such as x86 CPU and NVIDA
PU, have distinct instruction sets for floating-point computations. For

nstance, Intel provided x87, SSE, AVX and AVX-512 instruction sets
hich can perform 80-bit, 128-bit, 256-bit and 512-bit floating-point
perations. By contrast, NVIDIA GPUs, e.g., Tesla Kxx and GTX 9xx,
upport both single and double precision with ISO/IEC 60559 precision.
iffer from the x86 architecture in that rounding modes are encoded
ithin each floating-point instruction instead of dynamically using a

loating-point control word. Trap handlers for floating-point exceptions
re not supported, and on the GPU there is no status flag to indicate
hen calculations have overflowed, underflowed, or have involved

nexact arithmetic. Note that our proposed approach is based on the
SO/IEC 60559 standard and thus can be applied to multiple archi-
ectures whose implementations conform to the standard. However,
USE can currently analyze C/C++ programs involving floating-point
ata as it is implemented on LLVM and Clang.

.3. Motivating examples

alse positives caused by false assumption of floating-point path condition
Prior static analysis tools, e.g., Frama-c (Kirchner et al., 2015) and

pse-study (Zhang et al., 2022), reason incorrectly about conditions
elated to floating-point data, leading to false positives. When encoun-
ering conditions related to floating-point data, these tools assume these
onditions as true to allow the forward execution, in order to explore as
any program paths as possible. As a result, the above tools have lots

f false positives when analyzing programs with floating-point data.
As shown in func1 in Fig. 1(a), the path ‘‘1-3-4-5’’ is not reachable

nd thus the null pointer dereference in line 8 would never occur. How-
ver, Frama-c falsely detected this ‘‘bug’’, leading to false positives. The
eason behind is that, when Frama-c encounters an unknown condition,
t would make more ‘‘assumptions’’ and thus take the conditions at lines
and 5 as true. Moreover, Frama-c found a division-by-zero exception

t line 8, which is also a false positive, because its constraint solver
akes that the value of 𝑠𝑖𝑛(𝑧) − 1.0 may be zero. However, it is always

reater than zero because of 1.0 < 𝑧 < 1.5.

https://gitee.com/ma-dongyu/bupt_yuse


D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
Fig. 1. Examples of floating-point bugs and exceptions.
False negatives in detecting floating-point exceptions
When a floating-point expression does not satisfy the specifications

defined in the ISO/IEC 60559 (ISO, 2020) standard, a floating-point
bug may occur. Specifically, there are two ways to trigger these excep-
tions, direct operations on floating-point data and operations on the
return values of math functions which use floating-point data. As shown
in Fig. 1(b), in function gsl_sf_bessel_Knu_scaled_asympx_e
from GNU Scientific Library (GSL, 2023), if the value of 𝑛𝑢 is very
large, the resulted 𝑚𝑢 may be less than the minimum positive value
of floating-point data type and hence cause an underflow. When the
argument 𝑥 is a negative value, the 𝑠𝑞𝑟𝑡 function at line 5 will cause
an invalid operation, which may lead to denial of service attacks.
Frama-c does not provide the support for detecting floating-point un-
derflow exception and thus results in false negatives. Let us see func-
tion gsl_sf_zeta_e also from GNU Scientific Library (GSL, 2023),
shown in Fig. 1(c). If 𝑠 takes a very small negative value, the resulted
𝑛 may exceed the maximum value of integer type. Hence this implicit
type conversion causes an overflow. Fpse-study cannot detect overflow
exceptions caused by implicit type conversion and thus results in false
negatives.

3. Overview

YUSE works in two phases as shown in Fig. 2. For a given program
under test (PUT for short), in the preprocessing phase, YUSE first parses
the abstract syntax tree (AST for short) of the PUT in the AST Parser,
and then constructs the control flow graph (CFG for short) in the CFG
Constructor.

During the symbolic execution phase, YUSE symbolically executes
the PUT based on its CFG and AST with symbolic expressions. The math
function modeler symbolizes the math function calls in the PUT. Then,
the symbolic executor symbolically executes each path in the PUT,
constructs the constraints for variables and expressions along the path,
and leverages the constraint solver to judge whether a path is reachable
3 
or not. When arriving a predefined hook location, YUSE calls the bug
checkers mounted on the execution engine to examine whether a bug
is triggered or not, if yes, it generates a bug report. Inter-procedural
analysis module uses the caller–callee relationship among procedures
and thus enables more precise analysis, e.g., how variables flow across
different functions, which functions read or modify global or static
variables. Taint analysis module marks the distrusted or sensitive data,
e.g., user input, tracks their propagation during program execution, and
determines whether they cause potential bugs.

Specifically, we equip our framework with the capability to analyze
floating-point data, including symbolic values, symbolic expressions,
memory management, constraint solving, and bug checkers. Therefore,
constraints relate to floating-point data can be constructed, paths relate
to floating-point data can be explored, and exceptions relate to floating-
point data can be detected. Besides, we enhance the symbolic engine
with interval computation and interval constraint propagation in non-
relational numerical abstract domains in order to improve the accuracy
of detecting floating-point bugs and exceptions.

4. Approach

4.1. Symbolic support for floating-point data and operations

To symbolically execute a floating-point program, we enhance a
traditional symbolic executor (e.g., that of CSA) as follows.

– add symbolic value representations of floating-point constants,
variables and pointers.

– construct symbolic expression for operations on floating-point
data, e.g., addition, subtraction, multiplication, division opera-
tions, math operations, comparison operations, logical operations,
rounding operations.

– add solving support for floating-point constraints.



D. Ma et al.

w
e
s
Y

The Journal of Systems & Software 219 (2025) 112226 
Fig. 2. The architecture of YUSE.
– symbolically model math functions, e.g., trigonometric functions,
exponential functions, logarithmic functions, power functions,
by adding symbolic representations for function arguments and
return values and binding intervals to them.

– construct constraints for floating-point exceptions defined in the
ISO/IEC 60559 standard, and design checkers to detect these
exceptions.

With the help of these enhancements, YUSE can explore the paths
ith floating-point expressions, detect those bugs guarded by such
xpressions and exceptions caused by floating-point operations. For in-
tance, with its symbolic support for floating-point data and operations,
USE can determine that the path ‘‘1-3-4-5’’ in func1 in Fig. 1(a) is

not reachable.

4.2. Interval computation and interval constraint propagation in non-
relational numerical abstract domains

In order to calculate a variable’s interval accurately, we intro-
duce interval computation and interval constraint propagation in non-
relational numerical abstract domains. The non-relational numerical
abstract domain is an abstract representation method to describe the
numerical information of program variables. Specifically, we first ab-
stract each variable as an interval, i.e., its possible interval which
consists of an upper bound and a lower bound.

Then we specify interval computation rules for common computa-
tions, e.g., addition, subtraction, multiplication, division, comparison,
intersection, union, and add these rules into the symbolic engine. As a
result, the engine can apply these rules when collecting and merging
the variables’ values. For example, considering two variables 𝑎 and 𝑏,
and their intervals (𝑎𝑙 , 𝑎𝑢) and (𝑏𝑙 , 𝑏𝑢), respectively, the rules for their
intersection, addition and greater than are as follows.

𝑎 ∩ 𝑏 =
{

∅ if 𝑎𝑙 > 𝑏𝑢 or 𝑎𝑢 < 𝑏𝑙
(Max(𝑎𝑙 , 𝑏𝑙),Min(𝑎𝑢, 𝑏𝑢)) Otherwise (1)

𝑎 + 𝑏 = (Max(FLT_MIN, 𝑎𝑙 + 𝑏𝑙),Min(FLT_MAX, 𝑎𝑢 + 𝑏𝑢)) (2)

𝑎 > 𝑏 =

⎧

⎪

⎨

⎪

⎩

True if 𝑎𝑙 > 𝑏𝑢
False if 𝑎𝑢 < 𝑏𝑙
(−∞,+∞) Otherwise

(3)

where FLT_MAX means 3.402823466e+38f and FLT_MIN denotes
−3.402823466e+38f.

Moreover, when constructing a symbolic constraint, i.e., meeting a
conditional statement, the symbolic engine first calculates the interval
of the conditional expression, then updates the corresponding symbolic
states, and finally continues the execution with this new interval.

Note that, it is not always successful to merge intervals due to
the limitations of constraint solver. For example, it returns true when
solving the intersection of two discontinuous intervals in order to help
explore more paths.

By introducing interval computation and interval constraint prop-
agation in non-relational numerical abstract domains to the symbolic
engine, the symbolic values or constraints of float-point expressions are
calculated, merged and propagated in an interval manner, which can
4 
improve the accuracy of detecting floating-point bugs and exceptions.
Taking the func1 in Fig. 1(a) as example, YUSE can judge that the
correct interval of 𝑠𝑖𝑛(𝑧) is (𝑠𝑖𝑛(1.0), 𝑠𝑖𝑛(1.5)) and hence the value of
𝑠𝑖𝑛(𝑧) − 1.0 is always greater than zero. By contrast, Fpse-study took
it as a division-by-zero bug mistakenly.

4.3. Constraint construction and optimization for floating-point exceptions

Constraint construction for floating-point exceptions
Floating-point exceptions include division by zero, overflow, under-

flow, type conversion, invalid operation, and inexactness, according to
the floating-point ISO/IEC 60559 standard. In order to detect these
exceptions, we construct constraints for each kind of exception, as
shown in Table 1. Taking inexactness exception as an example, we
illustrate how to construct constraint for floating-point exceptions.
Inexactness exception is mainly caused by two cases: (1) two very close
floating-point numbers are subtracted, whose constraint is denoted as
𝑥 − 𝑦 = 0 ∣ 𝑥 < FLT_EPSILON + 𝑦; (2) two floating-point numbers with
significant differences are subtracted, whose constraint is denoted as
𝑥 − 𝑦 = 𝑥 ∣ 𝑥 > FLT_INTERVAL + 𝑦. As shown in Fig. 1(d), function
gsl_sf_gamma_inc_e in GSL exposes an inexactness exception.
Actually, when 𝑎 is a significant negative value, 𝑎𝑙𝑝ℎ𝑎−1.0 > 𝑎 is almost
always true, causing an almost endless loop.

Constraint optimization for floating-point exceptions
In order to improve the accuracy and efficiency of path constraint

solving, during the symbolic execution, YUSE rewrites the constraints
on overflow and underflow. For example, the constraint on overflow
caused by addition 𝐿 + 𝑅 > FLT_MAX, is rewritten as (𝑅 > 0) ∧ (𝐿 >
(FLT_MAX − 𝑅)) or (𝑅 < 0) ∧ (𝐿 > (FLT_MAX − 𝑅)); 𝐿 + 𝑅 < FLT_MIN
is rewritten as (𝑅 > 0) ∧ (𝐿 < (FLT_MIN − 𝑅)) or (𝑅 < 0) ∧ (𝐿 <
(FLT_MIN − 𝑅)).

Similarly, the constraint on underflow caused by multiplication 𝐿 ∗
𝑅 > FLT_MAX_NEG ∧ 𝐿 ∗ 𝑅 < FLT_MIN_POS is rewritten to (𝑅 >
0)∧(𝐿 > (FLT_MAX_NEG∕𝑅))∧(𝐿 < (FLT_MIN_POS∕𝑅)) or (𝑅 < 0)∧(𝐿 >
(FLT_MIN_POS∕𝑅)) ∧ (𝐿 < (FLT_MAX_NEG∕𝑅)).

Here 𝐿 and 𝑅 denotes the left and right value of a binary opera-
tor respectively, FLT_MIN_POS is 1.17549435e−38f, FLT_MAX_NEG is
−1.17549435e−38f.

For example, when YUSE meets the function gsl_sf_bessel_Knu_
scaled_asympx_e in GSL, as shown in Fig. 1(b), it first identifies the
math function sqrt at line 5 and gets the trigger condition from
Table 1, i.e., 𝑥 < 0. Then it checks whether the parameter 𝑥’s symbolic
value, i.e., (−∞,+∞) here, meets the trigger condition via its constraint
solver, which returns true here. Therefore YUSE reports an invalid
operation exception while Fpse-study and Frama-c cannot.

4.4. Modeling math functions

To detect floating-point bugs and exceptions caused by math func-
tions, the math function modeler identifies math functions and ac-
curately reasons about the paths which goes through such functions.
As a result, bug checkers can trigger or detect floating-point bugs
and exceptions caused by these math functions. Then, we classify the

math functions, and bind different constraint intervals according to



D. Ma et al.

p
t
c
s
i
a
w
s
c
m

S

2
s
f
i
a
p
T
f

I

i
t
f
a
f
s

s
a
i
f

l
i
c
s

The Journal of Systems & Software 219 (2025) 112226 
Table 1
Floating-point exceptions, Triggering condition and result.

Type Expression examples Triggering condition Result

Overflow

𝑥 ▵ 𝑦 ∣▵∈ {+,−, ∗, ∕}, 𝑥, 𝑦 ∈ 𝑥 ▵ 𝑦 > FLT_MAX +∞
{floating-point data or math functions} 𝑥 ▵ 𝑦 < FLT_MIN −∞

𝑥 = 𝑦 (double cast to float) 𝑦 > FLT_MAX ∨ 𝑦 < FLT_MIN
±∞

𝑥 = 𝑦 (float cast to int) 𝑦 > INT_MAX ∨ 𝑦 < INT_MIN

Underflow

𝑥 ▵ 𝑦 ∣▵∈ {∗, ∕, ∗=, ∕ =}, 𝑥, 𝑦 ∈ 0 < 𝑥 ▵ 𝑦 < FLT_MIN_POS ∨

Subnormal{floating-point data or math functions} FLT_MAX_NEG < 𝑥 ▵ 𝑦 < 0

𝑥 = 𝑦 (double cast to float) 0 < 𝑦 < FLT_MIN_POS ∨
FLT_MAX_NEG< 𝑦 < 0

Division by zero 𝑥∕𝑦, 𝑥%𝑦, fmod(x,y), drem(x,y), remainder(x,y) (𝑥 ≠ 0) ∧ (𝑦 = 0) +∞

Inexact 𝑥 − 𝑦 ∣ 𝑥 ≫ 𝑦 𝑥 > FLT_INTERVAL + 𝑦 𝑥
𝑥 − 𝑦 ∣ 𝑥 ≈ 𝑦 𝑥 < FLT_EPSILON + 𝑦 0

Invalid Ops.

𝑥∕𝑦 (𝑥 = 0) ∧ (𝑦 = 0)

NaN

√

𝑥, log (𝑥) 𝑥 < 0
arcsin (𝑥), arccos (𝑥) −1 < 𝑥 < 1
tan (𝑥) 𝑥 = 𝜋

2
+ 𝑘𝜋

pow(𝑥, 𝑦) 𝑥 = 0 ∧ 𝑦 ≤ 0
Operations on invalid values like: Inf+x, floor(Inf), x/Inf, x/NaN, 0*NaN Invalid values are judged based on the above results.
[
T

i
f

different classifications to the math functions and finally bind to the
program state. Specifically, for a math function 𝐹 , we initiate the
rocess by assigning a symbolic value to 𝐹 ’s return value. According
o its monotonicity, periodicity, and the interval of its arguments, we
alculate the interval of 𝐹 ’s output and bind the resulted interval to the
ymbolic value, which forms a new state on the exploded graph.2 Dur-
ng analyzing the program, as a conditional expression is encountered
nd the interval of any variable in the expression changes, a new state
ith the updated interval will be added to the exploded graph. The

tates on the exploded graph can help reason about paths and solve
onstraints. Modeling math functions helps YUSE collect the intervals
ore accurately and thus analyze the program more accurately.

ymbolic call of math functions
We first select dozens of functions from GNU scientific library (GSL,

023), such as sin, cos, tan, asin, acos, atan, cosh, tanh, acosh, atanh,
qrt, log, exp, pow, gamma, fmod, remainder, remquo etc, and different
loating-point type representations of these functions, and model them
n symbolic executor to help checkers detect bugs. When meeting

math function 𝐹 , YUSE leverages taint analysis to track 𝐹 ’s data
ropagation, and then create symbolic values and intervals for 𝐹 .
herefore, when exploring a path along with 𝐹 , YUSE can detect those
loating-point bugs and exceptions caused by 𝐹 .

nterval binding
When modeling a math function, we bind and assign a precise

nterval to it in order to accurately reason about the path along with
he function, which we call as interval binding. According to a math
unction’s characteristics, such as monotonicity, periodicity, arguments,
nd return values, etc, we divide math functions into four categories as
ollows and use different interval binding method for each category, as
hown in Algorithm 1.

Algorithm 1 is used for interval binding. The input is a call expres-
ion of a math function (𝑋 for convenience) in the PUT. When meeting
call to 𝑋 function, YUSE first creates for 𝑋 an empty symbolic value

n order to store 𝑋’s final interval later. Then we process each math
unction according to different categories.

Category 1: Functions with monotonicity. For such a function
ike 𝑙𝑜𝑔𝑥, we calculate the output interval based on input arguments’
ntervals. In addition, taking into account the rounding error, we
hange the output interval R(f(x)) to [f(x) - 𝛿, f(x) + 𝛿], where 𝛿 is
et as 220 ULP (Kong et al., 2013), and bind the output interval to

2 https://clang-analyzer.llvm.org/checker_dev_manual.html.
5 
the state of the exploded graph. Specifically, we obtain the calling
expression of the math function based on the abstract syntax tree,
and the current code position LCtx from the CheckerContext (Line
1). The CheckerContext acts as a bridge between a checker and the
symbolic executor, and provides the checker with the program context
and operational interfaces for detecting bugs, e.g., the current program
state and code location. Then, we construct a new symbolic value and
bind the symbolic value with the help of CheckerContext to model the
program state corresponding to the function’s return value (Lines 2–3).
Next we get the arguments’ intervals (Lines 4–7, 10, 11), call X function
to get its output interval (Line 8, Lines 12–15), bind the output interval
to the program state (Line 9, 16, 17), and update the exploded graph
(Lines 35–36). In this way, we get a relatively accurate return interval
of the function.

Category 2: Periodic functions with upper and lower bounds. If
this function is a periodic function, and if there is a monotonic part in
the function, such as 𝑐𝑜𝑠𝑥, 𝑠𝑖𝑛𝑥, 𝑎𝑠𝑖𝑛𝑥, 𝑎𝑐𝑜𝑠𝑥, we calculate and bind the
interval to it in the same way as that for the Category 1 function (Lines
18–20). If the function is not monotonic, we directly update the interval
with the upper and lower bounds of the function’s period bounds (Lines
21–23, Lines 25–28), bind them to the program state (Line 24, 29, 30),
and update the exploded graph (Lines 35–36).

Category 3: Function expression resulted with a constant value. For
such a expression whose result is always equal to a fixed value, such as
𝑠𝑖𝑛2𝑥+𝑐𝑜𝑠2𝑥 = 1, we directly get a fixed interval (Lines 31–32), such as
1, 1], and bind it to the function’s symbolic return value (Lines 33–34).
he specific binding process is the same as above.

Category 4: Other cases. Other math functions that do not belong
n the above three categories, such as discontinuous functions, discrete
unctions, combinations of irregular math functions, e.g., 𝑝𝑜𝑤(𝑥), 𝑥 ∗
𝑠𝑖𝑛𝑥, are difficult or even impossible to model symbolically.

Furthermore, when operating on the results of math function calls,
interval operations may also be involved, like 𝑠𝑖𝑛𝑥 ∗ 𝑙𝑜𝑔𝑥. In this way,
we can get a relatively accurate return interval of the function and add
it to the program state of the exploded graph for subsequent analysis.
The combination of math function modeling, interval binding, and
interval operations in non-relational numerical abstract domain can
further improve the accuracy of YUSE. For func1 in Fig. 1(a), Fpse-
study and CSA identified a division-by-zero exception at line 8, which
is a false positive. By contrast, thanks to modeling math functions,
YUSE accurately determines the interval for 𝑧 at line 7, then calls the
sin function to obtain its output interval, i.e., (sin(1.0), sin(1.5)), and
finally infers that the value of sin(z) - 1.0 at line 8 is always greater

than zero.

https://clang-analyzer.llvm.org/checker_dev_manual.html


D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
Algorithm 1: Modeling a math function 𝑋 symbolically
Input: CE: X’s call expression; C: CheckerContext; plbSval/pubSval:

lower/upper bound symbolic value of periodic function;
1 LCtx = getLocationContext(C);
2 retSval = makeRetSval(C, CE);
3 retSvalState = bindExpr(CE,C,retSval);
4 arg = CE.getArgument();
5 argSymVal = getSymSVal(arg);
6 if CE is monotonic function then
7 if argSymVal.isConcreteFloat then
8 returnConcreteSval = processConcreteFloatSval(argSymVal);
9 retSvalState = bindExpr(CE, LCtx,

adjustInterval(returnConcreteSval, 𝛿)) ;

10 if argSymVal.isSymbolVal then
11 argIntervalSet = getConstraintInterval(argSymVal);
12 resultLowerSval,resultUpperSval =

processSymbolVal(argIntervalSet);
13 R_GE_LOWER_SVAL = evalBinOp(BinaryOperator::GE, retSval,

resultLowerSval);
14 R_LE_UPPER_SVAL = evalBinOp(BinaryOperator::LE, retSval,

resultUpperSval);
15 returnSymSval = evalBinOp(BinaryOperator::AND,

R_GE_LOWER_SVAL, R_LE_UPPER_SVAL);
16 solve(returnSymSval);
17 retSvalState = bindExpr(CE, LCtx,

adjustInterval(returnSymSval, 𝛿));

18 if CE is periodic function with upper and lower binds then
19 if CE’s part is monotonic function then
20 execute same instructions as lines 7-17;

21 else
22 if argSymVal.isConcreteFloat then
23 returnConcreteSval =

processConcreteFloatSval(argSymVal);
24 retSvalState = bindExpr(CE, LCtx,

adjustInterval(returnConcreteSval, 𝛿));

25 if argSymVal.isSymbolVal then
26 R_GE_LOWER_SVAL = evalBinOp(BinaryOperator::GE,

retSval,plbSval);
27 R_LE_UPPER_SVAL = evalBinOp(BinaryOperator::LE,

retSval, pubSval);
28 returnSymSval = evalBinOp(BinaryOperator::AND,

R_GE_LOWER_SVAL, R_LE_UPPER_SVAL);
29 solve(returnSymSval);
30 retSvalState = bindExpr(CE, LCtx,

adjustInterval(returnSymSval, 𝛿));

31 if the result of CE is a constant value 𝐶 then
32 returnSymSval = evalBinOp(BinaryOperator::EQ, retSval, 𝐶) ;
33 solve(returnSymSval);
34 retSvalState = bindExpr(CE, LCtx, adjustInterval(returnSymSval,

𝛿));

35 if retSvalState is established then
36 addTransition(retSvalState);

4.5. Two-phase constraint solving

To solve path constraints, using a range constraint solver like the
one in CSA may bring many false positives; while using an SMT
solver (CSA, 2020) may be more accurate but is about 20× slower than
range solver (Range, 2023). In order to enhance the performance of
our analysis framework and to maintain accuracy, we propose a two-
phase constraint solving strategy, i.e., use range solver first and then
SMT solver. Specifically, when solving a symbolic constraint, we first
use range solver for solving, and then send the solved results to SMT
solver for verifying. This hybrid method can enhance the performance
6 
of our analysis framework and reduce time overhead significantly while
ensuring accuracy (see Section 5.5).

4.6. Mitigating path explosion

Path explosion is one of the main challenges of symbolic execution.
To mitigate this issue, first, YUSE invokes the constraint solver at each
branch, if the solver can prove that the logical formula given by the
path constraints of a branch is not satisfiable, this path can be safely
discarded by the symbolic engine without affecting soundness. This
can remove as many statements as possible while preserving unsatis-
fiability. Second, YUSE limits the number of times a loop is unrolled
and the depth of recursive function calls to prevent the generation
of a vast number of paths due to deep loops or recursive functions.
This helps control the number of paths considered during the analysis
process. Third, YUSE generates and uses summaries for frequently
called functions, which allows the executor to effectively reuse prior
analysis results, instead of re-analyzing the functions. This not only
reduces the workload of the analysis but also helps control the growth
of paths. Finally, in the case of solver timeout, YUSE takes both the true
and false branches, adds a lazy constraint to the path conditions and
continues the execution. When the exploration reaches an interest state,
e.g., a bug is found, YUSE will check whether the path is unreachable,
and suppress it if yes. This helps avoid exploring those paths that are
unlikely to reveal new bugs. Overall, the above methods enable YUSE
to effectively mitigate the path explosion problem when facing large
and complex program code, improving the accuracy and efficiency of
the analysis, as demonstrated in Section 5.

5. Evaluation

In this section, we aim to answer the following research questions
through empirical evaluation.

RQ1: How effective is YUSE in detecting floating-point bugs and
exceptions compared to state-of-the-art tools?

RQ2: How efficient is YUSE in constraint solving?
RQ3: Can YUSE find real bugs in real-world software?

5.1. Implementation and experiment setup

YUSE is implemented on top of Clang version 12.0.0 and supports
two static code analyzers, i.e., clang-tidy and clang static analyzer.
YUSE supports floating-point arithmetic, branch conditions, math func-
tions, and it can perform both path-sensitive and path-insensitive anal-
ysis on programs under test. Note that YUSE is affected by compiler
optimizations like -fast-math. For a program under test, YUSE con-
structs its abstract syntax tree and control flow graph for symbolic
analysis while compiler optimizations usually are performed before the
preprocess stage. As a result, aggressive compiler optimizations like -
fast-math may hinder an exception which otherwise would be detected
by YUSE.

All experiments were conducted on Ubuntu 20.04, with 64-core
CPU (Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz and 251.0 GB
of memory.

5.2. Benchmarks

Benchmarks used in the experiments include synthetic benchmarks
and real-world benchmarks. We first wrote synthetic benchmarks and
then injected them to three real-world software to construct real-world
benchmarks in order to measure the effectiveness Frama-c, Fpse-study
and YUSE in finding bugs. Finally we adopt the real-world benchmarks
in our experiments. For example, as shown in Fig. 3, a synthetic func-
tion func1() is injected to the software Sox to construct a real-world

benchmark.



D. Ma et al.

b

The Journal of Systems & Software 219 (2025) 112226 
Fig. 3. An example code snippet of real-world benchmark.

Table 2
Details of the real-world benchmarks.

Program Vers. KLOC Summary

GSL 5.0.1 387 A scientific computing library under the GNU project,
providing lots of functions for scientific computing

Sox 14.4.2 103 A cross-platform audio editing software
Mupdf 2.5.0 175 A lightweight open source software framework for

viewing and converting PDF, XPS, and E-book documents

Synthetic Benchmarks (60 correct, 60 incorrect) According to
floating-point operations and exception types, we developed dozens
of programs3 which contain the following floating-point bugs or ex-
ceptions: (1) bugs guarded by floating-point conditions. These bugs
include common types of bugs (e.g., division-by-zero and out-of-bound)
guarded by branch conditions which are composed of floating-point op-
erations (e.g., Addition/subtraction/multiplication/division). (2)
floating-point exceptions caused by floating-point operations. These ex-
ceptions contain overflow/underflow/division-by-zero/inexact/invalid
operations caused by floating-point operations. and (3) floating-point
exceptions caused by math functions. These exceptions consist of
overflow/underflow/division-by-zero/inexact/invalid operations res-
ulted from calling math functions. Therefore, for each category, the
synthetic benchmarks contain 20 programs expected to be correct and
20 ones expected to be incorrect, respectively. These programs (120
in total) have between 1 and 301 (median 8) branches and request
between 0 and 128 (median 8) symbolic bytes. Moreover, their lines of
code in C programming language are between 14 and 26 (median 17)
lines.

Real-world Benchmarks (60 correct, 60 incorrect) We evaluated
our tool using three real-world numerical software, i.e., GNU Scientific
Library (GSL) (GSL, 2023), Sound eXchange (Sox) (SOX, 2023) and
Mupdf (mupdf, 2023), whose details are listed in Table 2. They come
from numerical computing software libraries, audio software and image
processing software, respectively. They contain lots of floating-point
variables, conditions and operations. These benchmarks have between
6 and 254 (median 67) branches and request between 4 and 48 (median
16) symbolic bytes.

5.3. Baseline tools

We compare YUSE with two state-of-the-art static tools Frama-
c (Kirchner et al., 2015) and Fpse-study (Zhang et al., 2022) to validate
the effectiveness of YUSE (RQ1).

3 YUSE and all benchmarks are available at https://gitee.com/ma-dongyu/
upt_yuse.
7 
We did not choose Astrée and Ariadne as comparison tools because
they are not open-source. We did not compare YUSE with Klee-float
because KLEE-float does not support IEEE-754 exceptions and flags.

Frama-c is a well-known static analysis tool for C programs. It can
find multiple kinds of potential bugs such as null pointer dereference,
integer overflow, buffer overflow, division-by-zero, and precision loss
exceptions, using abstract interpretation technique.

Fpse-study, which was developed on top of KLEE, can analyze
floating-point programs using symbolic execution. It can detect
floating-point exceptions and those bugs guarded by a floating-point
condition.

5.4. RQ1: Effectiveness in detecting floating-point bugs and exceptions

To answer RQ1, we evaluated three tools against the real-world
benchmarks, and compared the bugs detected by them. Table 3 shows
the true positive(TP), true negative(TN), false positive(FP), false neg-
ative(FN) detection results of three tools for each kind of float-point
bugs and exceptions in three real-world software. We can see that (1)
the accuracy of Frama-c, Fpse-study and YUSE is 52.5%, 63.3%, and
92.5% respectively; (2) the recall of Frama-c, Fpse-study, and YUSE is
51.7%, 35.0%, and 91.6% respectively. YUSE outperforms two state-
of-the-art tools, Frama-c and Fpse-study, in both accuracy and recall of
detecting floating-point bugs and exceptions. Moreover, YUSE is 1.4×
and 7.1× faster than Frama-c and Fpse-study, respectively.

YUSE has 5 false negatives. Through manual analysis, we found
these five bugs occur either in deep loop statements or in math function
calls, which cause path explosion and thus cannot be successfully
detected by YUSE. YUSE has 4 false positives because its solver timed
out when solving some complex floating-point constraints. Frama-c
and Fpse-study have much false positives because they cannot deal
well with type conversions, reason about symbol intervals, inaccurately
model math functions, and solve complex constraints. Moreover, their
false negatives mainly come from: bugs initiated in deep loop statement
and math function calls, which causes path explosion, insufficient cross-
translation unit capabilities, lack of detection logic for underflow and
inexact floating-point exceptions, lack of modeling some math functions
(such as log1p, logb, fmod, lgamma, remquo, etc.).

5.5. RQ2: Efficiency in constraint solving

To answer RQ2, we employed three different solver strategies: range
constraint solver, SMT constraint solver, and our two-phase constraint
solving approach. Our results, shown in Table 4, indicate that the range
constraint solver had the shortest solving time, while the SMT solver
took the longest, approximately 20 × longer than the range solver. The
two-phase strategy showed a moderate analysis time, about 7 × longer
than the range solver. This strategy effectively enhances the perfor-
mance of the constraint solver while maintaining an acceptable number
of solver calls. Further, we set a one-hour for bug detection analysis, as
shown in Table 5. Within this time limit, the range constraint solver
resolved nearly all constraints in the snippets, albeit with a 67.1%
accuracy. The SMT solver, while resolving the least number of bugs,
achieved the highest accuracy at 95.5%. The two-phase strategy bal-
anced both aspects, solving most bugs with a 93.8% accuracy rate. The
range constraint solver, despite being sound, struggled with complex
constraints, often resulting in false positives and negatives due to its
simplistic approach and sensitivity to path depth. In contrast, the SMT
solver excelled in handling complex constraints with higher accuracy
but required longer solving and analysis times. Overall, the two-phase
constraint solving strategy demonstrated superior performance com-
pared to the other two methods. It utilized the strengths of the SMT
solver to minimize the range solver’s false positives, thereby enhancing
accuracy, and also mitigated the SMT’s time overhead to achieve a
balance between analysis time and accuracy.

https://gitee.com/ma-dongyu/bupt_yuse
https://gitee.com/ma-dongyu/bupt_yuse


D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
Table 3
Effectiveness on detecting floating-point(FP) bugs and exceptions.

Tool GSL Sox Mupdf

Bugs guarded by Exceptions caused by Exceptions caused by
FP conditions FP operations FP math functions

TP TN FP FN Time (s) TP TN FP FN Time (s) TP TN FP FN Time (s)

Frama-c 17 7 13 3 12 193 12 11 9 8 3302 2 14 6 18 5548
Fpse-study 12 16 4 8 60 895 8 20 0 12 16 603 1 19 1 19 27 895
YUSE 17 18 2 3 8661 19 20 0 1 2308 19 18 2 1 3916
Table 4
Efficiency when using different solving strategies.

Benchmark YUSE-RS YUSE-SMT YUSE-RSSMT

Constraints Time (s) Constraints Time (s) Constraints Time (s)

RS SMT RS SMT

GSL 30 571 1219 30 571 23 882 30 571 346 8661
Sox 8532 336 8532 6719 8532 183 2308
Mupdf 13 822 585 13 822 12 189 13 822 221 3916
Fig. 4. A bug found by YUSE which was assigned CVE-2023-47483.
i

m
t
t
r

Table 5
Effectiveness when using different solving strategies.

Benchmark YUSE-RS YUSE-SMT YUSE-RSSMT

TP TN FP FN TP TN FP FN TP TN FP FN

GSL 17 10 10 3 4 20 0 16 9 19 1 11
Sox 19 12 8 1 11 20 0 9 19 20 0 1
Mupdf 19 11 9 1 6 19 1 14 18 18 2 2

5.6. RQ3: Ability to find real bugs

To address RQ3, we tested three real-world software, i.e., GSL,
Sox and Mupdf, using YUSE, Frama-c and Fpse-study respectively, in
order to evaluate their capabilities of finding real bugs. YUSE found
1601, 111 and 134 potential bugs in GSL, Sox and Mupdf respectively,
from which we selected 30 randomly and validated them manually.
We uncovered 20 new bugs, 12 of which were assigned CVE IDs and
8 of which were confirmed by developers, as shown in Table 6. The
2nd column describes the buggy functions, and the 3rd column denotes
the CVE (Common Vulnerabilities and Exposures) number or issue
recognition confirmed by corresponding developers. We further tested
these 20 validated bugs using two baseline tools, Frama-c and Fpse-
study. The results, presented in Columns 4 and 5 of Table 6, reveal
that neither Frama-c nor Fpse-study could detect 12 bugs in the Sox and
Mupdf benchmarks. Frama-c identified 5 bugs in GSL, while Fpse-study
detected a single bug in the same benchmark.
 w

8 
Taking CVE-2023-47483 as an example, in flowTrigger func-
tion shown in Fig. 4, YUSE finds the path ‘‘1-2-3-4-6-7-8-9’’ is reach-
able and reports a division-by-zero bug on line 9. The reason behind
this is that during the analysis of Sox, (1) YUSE finds a path along
which p->samplesLen_ns was assigned with zero before entering
flowTrigger function; (2) Using inter-procedural analysis and taint
analysis techniques, YUSE explores a path along which the variable’s
value keeps unmodified. Therefore, combined with its interval collec-
tion capability, YUSE can find this bug. By comparison, Frama-c and
Fpse-study cannot discover this bug and result in false negatives, due
to their insufficient support for float-point data and operations.

6. Limitations

When modeling a math function, we bind and assign a precise
interval to its return value in order to accurately reason about the
paths through the function, however, some complex math functions,
such as discontinuous functions, discrete functions, or combinations of
irregular math functions, e.g., 𝑝𝑜𝑤(𝑥), 𝑥 ∗ 𝑠𝑖𝑛𝑥, are difficult or even
mpossible to model symbolically.

Moreover, YUSE is affected by compiler optimizations like -fast-
ath. For a program under test, YUSE constructs its abstract syntax

ree and control flow graph for symbolic analysis while compiler op-
imizations usually are performed before the preprocess stage. As a
esult, aggressive compiler optimizations may hinder an exception

hich otherwise would be detected by YUSE.



D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
Table 6
Real bugs detected by YUSE. FS: Fpse-study; FC: Frama-C.

Function CVE/Issues FS FC

Sox

read_samples() CVE-2023-47481 – –
sox_ladspa_flow() CVE-2023-47482 – –
flowTrigger() CVE-2023-47483 – –
lsx_offset_seek() CVE-2023-47484 – –
seek() CVE-2023-47485 – –
interleave() CVE-2023-47486 – –

Mupdf mark_line() CVE-2023-47487 – –
bmp_decompress_rle4() CVE-2023-51103 – –
fz_new_pixmap_from_float_data() CVE-2023-51104 – –
compute_color() CVE-2023-51105 – –
pnm_binary_read_image() CVE-2023-51106 – –
pnm_binary_read_image() CVE-2023-51107 – –

GSL

gsl_sf_conicalP_xlt1_large_neg_mu_e() issue 1 –
√

gsl_cdf_laplace_Qinv() issue 2 –
√

gsl_sf_bessel_Jnu_asympx_e() issue 3
√

–
gsl_ran_gamma_knuth() issue 4 –

√

hyperg_1F1_1() issue 5 – –
gsl_s_bessel_Knu_scaled_asympx_e() issue 6 –

√

gsl_sf_conicalP_xlt1_large_neg_mu_e() issue 7 –
√

gsl_sf_bessel_Knu_scaled_asymp_unif_e() issue 8 – –

7. Related work

Recent years have seen significant advancements in the field of
numerical software analysis, leading to the development of various
research methods and tools. Broadly, these approaches are mainly
based on three techniques: symbolic execution, fuzzing and abstract
interpretation.

7.1. Detecting float-point bugs and exceptions via symbolic execution

Recent research efforts in software testing and program verification
have extensively utilized symbolic execution. KLEE-fp (Collingbourne
et al., 2011a) extends the KLEE symbolic execution framework to cross-
check SIMD/SSE implementations against their corresponding scalar
versions, in order to prove their bounded equivalence or find their in-
consistencies. KLEE-cl (Collingbourne et al., 2011b) supports symbolic
reasoning on the equivalence between symbolic values for crosscheck-
ing a C or C++ program against an accelerated OpenCL version, and
thus can detect data race bugs in OpenCL programs.

Ariadne (Barr et al., 2013) adapts symbolic execution to detect
floating-point exceptions. It uses a real arithmetic solver to solve
floating-point constraints, however, compared to real numbers,
floating-point numbers have limited precision and representational
interval, converting the solving on floating-point constraints to the
solving on real constraints will result in inaccuracies.

Similarly, Klee-float Liew et al. (2017), while supporting floating-
point arithmetic, lacks specific logic for detecting floating-point ex-
ceptions and cannot adequately model math functions. FPGen (Guo
and Rubio-González, 2020) formulates the problem of generating high
error-inducing floating-point inputs as a code coverage maximization
problem solved using symbolic execution, in order to maximize the
numerical error. However, it cannot detect floating-point exceptions.

SeVR-fpe (Wu et al., 2017) uses value-range analysis to acceler-
ate symbolic execution for floating-point exception detection. It takes
advantage of interval arithmetic and relational arithmetic to iden-
tify value ranges and then enumerates the value in ranges to find
a solution. In comparison, YUSE specifies interval computation rules
for common computations, e.g., addition, multiplication, comparison,
and adds these rules into the symbolic engine. The engine can apply
these rules when collecting and merging the variables’ values dur-
ing symbolic execution, thereby making YUSE more efficient. Besides,
YUSE can deal well with the results of math function calls which con-
tain interval operations. The combination of math function modeling

and interval binding further improves the accuracy of YUSE.

9 
Zhang et al. (2022) have conducted the first empirical study on
five existing symbolic execution methods for floating-point programs.
They have shown different capacities of different methods for solving
bit-vector floating-point formulas. Their study’s result indicates that
SMT, fuzzing, and real arithmetic solving-based methods complement
each other in bug finding. Based on the finding, they implement a tool
named Fpse-study synergizing the existing methods to improve sym-
bolic execution’s effectiveness. However, it cannot accurately collect
floating-point constraints and model math functions.

Despite these advancements, existing symbolic execution tools are
generally constrained by floating-point type conditions and lack specific
logic for detecting floating-type bugs. They often struggle to accu-
rately reason about program paths and detect floating-point bugs and
exceptions, leaving much room to improve accuracy and efficiency.

7.2. Detecting float-point bugs and exceptions via dynamic analysis

Dynamic program analysis has proven to be an effective and prac-
tical approach for automatically identifying vulnerabilities in software.
FP-Analysis (Zou et al., 2019) is a search-based approach to find
inputs that trigger the largest atomic condition on each atomic opera-
tion, in order to search large floating-point errors in numerical code.
FPED (Xia et al., 2021) is an inspector of floating-point errors for
arithmetic expressions which can pick a suitable benchmark generation
approach by analyzing the distribution of the expression of a floating-
point operation, thereby minimizing the possibilities of underreporting
floating-point errors.

NumFUZZ (Ma et al., 2022) leverages greybox fuzzing technique,
informed by floating-point format-aware coverage, to identify floating-
point exceptions in numerical programs. Additionally, RADE (Wang
et al., 2022) combines ranking analysis and search algorithm to detect
substantial floating-point errors in numerical programs. FPChecker (La-
guna et al., 2022) is a dynamic analysis tool to detect floating-point
errors in HPC applications and supports multiple HPC models like MPI,
OpenMP, and CUDA. GPU-FPX (Li et al., 2023) can detect floating-point
exceptions in NVIDIA GPUs by leveraging binary instrumentation and
hence offers the occurrence location and control flow for the identified
exception.

Despite their effectiveness, these methods are constrained by their
reliance on the run-time environment or code instrumentation, which
often results in high resource consumption, low performance and many
false negatives.

7.3. Detecting float-point bugs and exceptions via abstract interpretation

Abstract interpretation is a prominent technique in the analysis
of floating-point programs. Astrée (Cousot et al., 2005) uses abstract
interpretation to prove the correctness of C code, including floating-
point computations. It has been notably used in the verification of
flight control software for Airbus aircraft. Frama-c (Kirchner et al.,
2015), a comprehensive source code analysis platform for C programs,
supports floating-point computations and can identify potential float-
point exceptions and bugs like overflows and precision loss. PRE-
CiSA (Moscato et al., 2017) is an abstract interpretation framework to
analyze round-off errors in floating-point programs.

Despite their strengths, these abstract interpretation methods do not
perform path-sensitive analysis and thus result in lots of false positives.

YUSE differs from the above methods by effectively addressing
floating-point types and operations. It can accurately deal with math
function operations, construct floating-point path conditions, and de-
tect floating-point bugs and exceptions. YUSE boasts high coverage,
low overhead, and minimal false positives. Furthermore, YUSE employs
a two-phase solving strategy which significantly balances effectiveness

and efficiency.



D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
8. Conclusion

This paper proposes an analysis framework YUSE, which can con-
struct floating-point related constraints and explore floating-point paths
to detect floating-point bugs and exceptions in numerical code. Inter-
val computation and interval constraint propagation in non-relational
numerical abstract domains are also introduced to improve the anal-
ysis accuracy. Moreover, YUSE symbolically models math functions
and leverages a two-phase constraint solving strategy to enhance its
performance. Evaluation results on three real-world software, i.e., GSL,
Sox and Mupdf, show that YUSE is more effective and efficient in
detecting floating-point bugs and exceptions than two state-of-the-art
tools, i.e., Frama-c and Fpse-study. Specifically, YUSE is 1.4× and
7.1× faster than Frama-c and Fpse-study, respectively, and found 20
new bugs, 12 of which were assigned CVE IDs and 8 of which were
confirmed by corresponding developers.

CRediT authorship contribution statement

Dongyu Ma: Writing – review & editing, Writing – original draft,
Validation, Software, Resources, Methodology, Investigation, Data cu-
ration, Conceptualization. Zeyu Liang: Writing – review & editing,
Visualization, Validation, Methodology, Formal analysis. Luming Yin:
Visualization, Software, Resources, Methodology. Hongliang Liang:
Writing – review & editing, Validation, Supervision, Project adminis-
tration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Anon, Non-relational abstract domain https://www-apr.lip6.fr/~mine/enseignement/
mpri/2017-2018/03-nonrel_ok.pdf.

ARIANE 5: Flight 501 failure http://sunnyday.mit.edu/nasa-class/Ariane5-report.html.
Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I., 2018. A survey of

symbolic execution techniques. ACM Comput. Surv. 51 (3), 1–39.
Barr, E.T., Vo, T., Le, V., Su, Z., 2013. Automatic detection of floating-point exceptions.

ACM Sigplan Not. 48 (1), 549–560.
Collingbourne, P., Cadar, C., Kelly, P.H., 2011a. Symbolic crosschecking of floating-

point and SIMD code. In: Proceedings of the Sixth Conference on Computer Systems.
pp. 315–328.

Collingbourne, P., Cadar, C., Kelly, P.H.J., 2011b. Symbolic testing of OpenCL code. In:
Eder, K., ao Lourenço, J., Shehory, O. (Eds.), Hardware and Software: Verification
and Testing - 7th International Haifa Verification Conference, HVC 2011, Haifa,
Israel, December 6-8, 2011, Revised Selected Papers. In: Lecture Notes in Computer
Science, vol. 7261, Springer, pp. 203–218. http://dx.doi.org/10.1007/978-3-642-
34188-5_18.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X., 2005.
The ASTRÉE analyzer. In: Programming Languages and Systems: 14th European
Symposium on Programming, ESOP 2005, Held As Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,
April 4-8, 2005. Proceedings 14. Springer, pp. 21–30.

Using CSA to find bugs https://llvm.org/devmtg/2020-09/slides/Using_the_clang_static_
ananalyzer_to_find_bugs.pdf.

CSA homepage. [Online]. Available: http://clang-analyzer.llvm.org/index.html.
de Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (Eds.), Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337–340.

Dinda, P., Bernat, A., Hetland, C., 2020. Spying on the floating point behavior of
existing, unmodified scientific applications. In: Proceedings of the 29th Inter-
national Symposium on High-Performance Parallel and Distributed Computing.
HPDC ’20, Association for Computing Machinery, New York, NY, USA, pp. 5–16.
http://dx.doi.org/10.1145/3369583.3392673.
10 
Goldberg, D., 1991. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23 (1), 5–48. http://dx.doi.org/10.1145/103162.
103163.

GSL homepage. [Online]. Available: http://www.gnu.org/software/gsl/.
Guo, H., Rubio-González, C., 2020. Efficient generation of error-inducing floating-point

inputs via symbolic execution. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. pp. 1261–1272.

2020. ISO/IEC/IEEE international standard - Floating-point arithmetic. In: ISO/IEC
60559:2020(E) IEEE Std 754-2019. pp. 1–86. http://dx.doi.org/10.1109/IEEESTD.
2020.9091348.

King, J.C., 1976. Symbolic execution and program testing. Commun. ACM 19 (7),
385–394. http://dx.doi.org/10.1145/360248.360252.

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B., 2015. Frama-
C: A software analysis perspective. Form. Asp. Comput. 27 (3), 573–609. http:
//dx.doi.org/10.1007/s00165-014-0326-7.

Kong, S., Gao, S., Clarke, E.M., 2013. Floating-Point Bugs in Embedded GNU C Library.
CMU School of Computer Science Technical Report, CMU-CS-13-130, Tech. Rep.

Laguna, I., Tirpankar, T., Li, X., Gopalakrishnan, G., 2022. Fpchecker: Floating-
point exception detection tool and benchmark for parallel and distributed HPC.
In: IEEE International Symposium on Workload Characterization, IISWC 2022,
Austin, TX, USA, November 6-8, 2022. IEEE, pp. 39–50. http://dx.doi.org/10.1109/
IISWC55918.2022.00014.

Li, X., Laguna, I., Fang, B., Swirydowicz, K., Li, A., Gopalakrishnan, G., 2023. Design
and evaluation of GPU-FPX: A low-overhead tool for floating-point exception
detection in NVIDIA GPUs. In: Butt, A.R., Mi, N., Chard, K. (Eds.), Proceedings of
the 32nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 2023, Orlando, FL, USA, June 16-23, 2023. ACM, pp. 59–71.
http://dx.doi.org/10.1145/3588195.3592991.

Liew, D., Cadar, C., Donaldson, A., KLEE floating-point extensions team imperial.
https://github.com/srg-imperial/klee-float.

Ma, C., Chen, L., Yi, X., Fan, G., Wang, J., 2022. NuMFUZZ: A floating-point format
aware fuzzer for numerical programs. In: 2022 29th Asia-Pacific Software Engi-
neering Conference. APSEC, pp. 338–347. http://dx.doi.org/10.1109/APSEC57359.
2022.00046.

Moscato, M., Titolo, L., Dutle, A., Munoz, C.A., 2017. Automatic estimation of verified
floating-point round-off errors via static analysis. In: Computer Safety, Reliability,
and Security: 36th International Conference, SAFECOMP 2017, Trento, Italy,
September 13-15, 2017, Proceedings 36. Springer, pp. 213–229.

mupdf https://github.com/ArtifexSoftware/mupdf.
Patriot missile defense: Software problem led to system failure at Dhahran, Saudi Arabia

https://www.gao.gov/assets/imtec-92-26.pdf.
Range constraint solver in CSA https://clang.llvm.org/doxygen/

/RangeConstraintManager_8cpp_source.html.
SOX homepage. [Online]. Available: https://sourceforge.net/projects/sox/.
Wang, Z., Yi, X., Yu, H., Yin, B., 2022. Detecting high floating-point errors via ranking

analysis. In: 2022 29th Asia-Pacific Software Engineering Conference. APSEC, IEEE,
pp. 397–406.

Wu, X., Li, L., Zhang, J., 2017. Symbolic execution with value-range analysis for
floating-point exception detection. In: Lv, J., Zhang, H.J., Hinchey, M., Liu, X.
(Eds.), 24th Asia-Pacific Software Engineering Conference, APSEC 2017, Nanjing,
China, December 4-8, 2017. IEEE Computer Society, pp. 1–10. http://dx.doi.org/
10.1109/APSEC.2017.6.

Wu, X., Xu, Z., Yan, D., Wu, T., Yan, J., Zhang, J., 2016. The floating-point extension
of symbolic execution engine for bug detection. In: Potanin, A., Murphy, G.C.,
Reeves, S., Dietrich, J. (Eds.), 23rd Asia-Pacific Software Engineering Conference,
APSEC 2016, Hamilton, New Zealand, December 6-9, 2016. IEEE Computer Society,
pp. 265–272. http://dx.doi.org/10.1109/APSEC.2016.045.

Xia, Y., Guo, S., Hao, J., Liu, D., Xu, J., 2021. Error detection of arithmetic expressions.
J. Supercomput. 77 (6), 5492–5509.

Z3 solver https://github.com/Z3Prover/z3.
Zhang, G., Chen, Z., Shuai, Z., 2022. Symbolic execution of floating-point programs:

How far are we? In: 29th Asia-Pacific Software Engineering Conference, APSEC
2022, Virtual Event, Japan, December 6-9, 2022. IEEE, pp. 179–188. http://dx.
doi.org/10.1109/APSEC57359.2022.00030.

Zou, D., Zeng, M., Xiong, Y., Fu, Z., Zhang, L., Su, Z., 2019. Detecting floating-point
errors via atomic conditions. Proc. ACM Program. Lang. 4 (POPL), 1–27.

Dongyu Ma received her B.Sc. degree in Software Engineering from Dalian JiaoTong
University, China in 2021. She is currently a M.Sc. student at Beijing University of Posts
and Telecommunications, China, working on program analysis and software testing.

Zeyu Liang received his B.Sc. degree in Mathematics from University California San
Diego, USA in 2024. He is currently a research assistant at Beijing University of Posts
and Telecommunications, China, working on deep learning and software testing.

Luming Yin received his B.Sc. degree in Computer Science from GuangXi University,
China in 2022. He is currently a M.Sc. student at Beijing University of Posts and
Telecommunications, China, working on program analysis and software testing.

https://www-apr.lip6.fr/~mine/enseignement/mpri/2017-2018/03-nonrel_ok.pdf
https://www-apr.lip6.fr/~mine/enseignement/mpri/2017-2018/03-nonrel_ok.pdf
https://www-apr.lip6.fr/~mine/enseignement/mpri/2017-2018/03-nonrel_ok.pdf
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb3
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb3
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb3
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb4
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb4
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb4
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb5
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb5
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb5
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb5
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb5
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb7
https://llvm.org/devmtg/2020-09/slides/Using_the_clang_static_ananalyzer_to_find_bugs.pdf
https://llvm.org/devmtg/2020-09/slides/Using_the_clang_static_ananalyzer_to_find_bugs.pdf
https://llvm.org/devmtg/2020-09/slides/Using_the_clang_static_ananalyzer_to_find_bugs.pdf
http://clang-analyzer.llvm.org/index.html
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb10
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb10
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb10
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb10
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb10
http://dx.doi.org/10.1145/3369583.3392673
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://www.gnu.org/software/gsl/
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb14
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb14
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb14
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb14
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb14
http://dx.doi.org/10.1109/IEEESTD.2020.9091348
http://dx.doi.org/10.1109/IEEESTD.2020.9091348
http://dx.doi.org/10.1109/IEEESTD.2020.9091348
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb18
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb18
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb18
http://dx.doi.org/10.1109/IISWC55918.2022.00014
http://dx.doi.org/10.1109/IISWC55918.2022.00014
http://dx.doi.org/10.1109/IISWC55918.2022.00014
http://dx.doi.org/10.1145/3588195.3592991
https://github.com/srg-imperial/klee-float
http://dx.doi.org/10.1109/APSEC57359.2022.00046
http://dx.doi.org/10.1109/APSEC57359.2022.00046
http://dx.doi.org/10.1109/APSEC57359.2022.00046
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb23
https://github.com/ArtifexSoftware/mupdf
https://www.gao.gov/assets/imtec-92-26.pdf
https://clang.llvm.org/doxygen//RangeConstraintManager_8cpp_source.html
https://clang.llvm.org/doxygen//RangeConstraintManager_8cpp_source.html
https://clang.llvm.org/doxygen//RangeConstraintManager_8cpp_source.html
https://sourceforge.net/projects/sox/
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb28
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb28
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb28
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb28
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb28
http://dx.doi.org/10.1109/APSEC.2017.6
http://dx.doi.org/10.1109/APSEC.2017.6
http://dx.doi.org/10.1109/APSEC.2017.6
http://dx.doi.org/10.1109/APSEC.2016.045
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb31
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb31
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb31
https://github.com/Z3Prover/z3
http://dx.doi.org/10.1109/APSEC57359.2022.00030
http://dx.doi.org/10.1109/APSEC57359.2022.00030
http://dx.doi.org/10.1109/APSEC57359.2022.00030
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb34
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb34
http://refhub.elsevier.com/S0164-1212(24)00270-X/sb34


D. Ma et al. The Journal of Systems & Software 219 (2025) 112226 
Hongliang Liang received his Ph.D. degree in computer science from the University
of Chinese Academy of Sciences, China in 2002. He leads the Trusted Software and In-
telligent System research group at Beijing University of Posts and Telecommunications,
China. His main research interests include system software, trustworthy software, and
11 
artificial intelligence. He has published more than 40 articles in high impact journals
and blind peer-reviewed conferences. He is a member of the IEEE and ACM, and serves
as a reviewer for some prestigious journals, including the IEEE TSE, TPAMI, TRel, TIST,
FGCS, COSE and JSS, etc.


	Symbolic testing of floating-point bugs and exceptions
	INTRODUCTION
	BACKGROUND & MOTIVATION
	Static symbolic execution
	Floating-point data and exceptions
	Motivating examples
	False positives caused by false assumption of floating-point path condition
	False negatives in detecting floating-point exceptions


	Overview
	Approach
	Symbolic support for floating-point data and operations 
	Interval computation and interval constraint propagation in non- relational numerical abstract domains
	Constraint construction and optimization for floating-point exceptions
	Constraint construction for floating-point exceptions
	Constraint optimization for floating-point exceptions

	Modeling math functions
	Symbolic call of math functions
	Interval binding

	Two-phase constraint solving
	Mitigating path explosion

	EVALUATION
	Implementation and Experiment Setup
	Benchmarks
	Baseline tools
	RQ1: Effectiveness in detecting floating-point bugs and exceptions
	RQ2: Efficiency in constraint solving
	RQ3: Ability to find real bugs

	LIMITATIONS
	RELATED WORK
	Detecting float-point bugs and exceptions via symbolic execution
	Detecting float-point bugs and exceptions via dynamic analysis
	Detecting float-point bugs and exceptions via abstract interpretation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


