
1

Parallel Computing on RTEMS Operating System

Zeyu Liang1 and Lei Wang2

1 University of California, San Diego, La Jolla CA 92037, USA
2 Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract. With the increasing complexity of computing tasks and the
rise in data volume, current embedded and realtime systems, which are
armed with multiple kinds of architectures, require parallel computing
capability. However, the mainstream parallel programming models like
OpenCL and MPI are too complex for these embedded and realtime
systems. In this paper, we present a heterogeneous parallel program-
ming framework Paor and implement it on RTEMS operating system.
Paor provides several easy-to-use APIs to facilitate that computing de-
vices of different architectures can collaborate in executing computing-
intensive or data-intensive tasks on RTEMS operating system. More-
over, Paor provides supports for computational operators, including stan-
dard operators based on BLAS (Basic Linear Algebra Subprograms) and
user-defined operators, thereby facilitating the parallelization of conven-
tional mathematical computations. Experimental results in a heteroge-
neous computing environment show that Paor performs well on both
computing-intensive and data-intensive tasks.

Keywords: Parallel computing · RTEMS · BLAS

1 INTRODUCTION

With the rapid advancement of information technology and the increasing
trends towards artificial intelligence, embedded and networked devices are being
widely deployed in various fields. On one hand, these devices are equipped with
multiple and/or heterogeneous processors; On the other hand, these devices usu-
ally run with embedded and realtime operating systems, which lack of commonly
used software infrastructure, such as parallel computing facilities, compared to
mainstream desktop or server OS like Linux or Windows.

Cluster-based computing is the mainstream method for parallel computing in
many application fields, usually with Linux as the most popular operating sys-
tem and MPI [1] as the standard protocol for message passing between nodes.
The use of standard messaging APIs simplifies the development and portabil-
ity of distributed applications. However, current MPI implementations (such as
MPICH [2] and OpenMPI [5]) rely on operating systems like Linux or Windows
and require significant memory and computing capabilities, and hence unsuit-
able for embedded systems with limited computing power and small memory
footprint.

Parallel Computing on RTEMS 3

To address the above issue, we propose a heterogeneous parallel computing
framework called Paor, and implement it on RTEMS, an open source embed-
ded and realtime operating system. Paor offers a promising solution for building
clusters with embedded devices running on RTEMS. Paor consists of two kinds
of nodes. Control nodes are responsible for task distribution, task control, and
the collection and merging of task computation results. compute nodes can be
of different processor architecture and each of them executes specific computa-
tions and returns results to control nodes. Moreover, Paor provides supports for
computational operators, including standard operators based on BLAS (Basic
Linear Algebra Subprograms) and user-defined operators, thereby facilitating
the parallelization of conventional mathematical computations.

Our contributions are summarized as follows.

– We present a heterogeneous parallel computing framework called Paor and
implement it on RTEMS operating system. Paor provides a promising so-
lution for embedded devices running on RTEMS. To our best knowledge,
Paor is the first to provide heterogeneous parallel computing capability for
RTEMS.

– We enhance Paor with commonly used computational operators which con-
tain both standard BLAS-based operators and custom logic-based operators.
This allows for the utilization of multiple processors or cores in compute
nodes and improves the computational efficiency of parallel programs.

– We evaluated Paor in a heterogeneous cluster and experimental results show
that Paor performs effectively and efficiently on both computing-intensive
and data-intensive tasks.

The remainder of this paper is structured as follows. Section 2 describes the
background of parallel computing frameworks. We present the detail design of
Paor in Section 3. Section 4 evaluates Paor’s effectiveness and efficiency in a
heterogeneous cluster. We discuss related work in Section 5, and conclude in
Section 6.

2 BACKGROUND

In this section, we introduce the background of the parallel programming
models widely used in server or desktop clusters, such as MPI, OpenMP, and
OpenCL.

2.1 MPI

MPI [1, 18] is a widely used programming model in parallel computing that
uses message passing interfaces. It provides a rich set of APIs that define a set
of data types and communication operations, such as point-to-point communi-
cation, collection operations, synchronization operations. MPI supports multiple
data transmission methods and allows efficient data transfer and communication
between multiple devices or nodes. It is suitable for multiple parallel computing

4 F. Author et al.

requirements, such as clusters and supercomputers. There are several implemen-
tations of MPI for mainstream operating systems and parallel environments,
such as MPICH [2], MPICH2 [3], MVAPICH [4], OpenMPI [5], LAM/MPI [14].

2.2 OpenCL

OpenCL [6] is an open industry standard for cross-platform, parallel program-
ming of diverse accelerators found in supercomputers, cloud servers and personal
computers. It supports multiple kinds of devices, such as CPU, GPU, and FPGA.
It includes a language, API, libraries and a runtime system to support software
development. The target of OpenCL is expert programmers wanting to write
portable yet efficient code, hence it provides a low-level hardware abstraction
plus a framework to support programming and many details of the underlying
hardware are exposed, such as platform model, memory model, execution model
and programming model [7].

2.3 OpenMP

The OpenMP API [8] supports multi-platform shared-memory parallel pro-
gramming in C/C++ and Fortran. It defines a portable, scalable model with
a simple and flexible interface for developing parallel applications on platforms
from the desktop to the supercomputer. The OpenMP API uses the fork-join
model of parallel execution. Multiple threads of execution perform tasks defined
implicitly or explicitly by OpenMP directives. The OpenMP API provides a
relaxed-consistency, shared-memory model. All OpenMP threads have access to
a place to store and to retrieve variables, called the memory. A given storage
location in the memory may be associated with one or more devices, such that
only threads on associated devices have access to it [19].

Unfortunately, since their design purposes are different from the requirements
in heterogeneous embedded and realtime devices, none of the above models was
applied to embedded real-time systems, especially RTEMS operating system.

3 APPROACH

In this section, we describe the design of Paor for parallel computing in
heterogeneous clusters.

3.1 Overview of Paor

The architecture of Paor is depicted in Figure 1. Paor employs a master-
slave topology with a star-shaped configuration, comprising two distinct types of
nodes: control nodes and compute nodes. The control node serves as the central
component of the cluster, tasked with managing job distribution, overseeing
task execution, and aggregating the computational results. Each slave node,
referred to as a compute node, is dedicated to performing the computational

Parallel Computing on RTEMS 5

Control node

Node
management

module

Caching
module

Network
communication

module

Task
management

module

Compute node

Computation
module

Caching
module

Network
communication

module

Task
management

module

Compute node

Computation
module

Caching
module

Network
communication

module

Task
management

module

Compute node

..
.

Fig. 1: The architecture of Paor

tasks assigned by the control node and returning the processed results. The
compute nodes are designed to leverage multiple computational resources (e.g.,
CPU or GPU) through multi-threading, enabling efficient parallel processing.

Paor incorporates a range of features, including task states, caching mech-
anism, and communication protocol, which collectively enhance the system’s
functionality and adaptability. The subsequent sections provide a detailed ex-
amination of Paor, with a focus on the internal modules and their respective
roles.

The control node is composed of several key modules: node management,
task management, caching, and network communication. The node management
module oversees the administration of active compute nodes, ensuring their avail-
ability and performance within the cluster. Task management is responsible for
the allocation of tasks, aggregation of computational results, and synchroniza-
tion of data across nodes. The caching module plays a critical role in storing
function parameters, registering function, and retaining both inputs and their
corresponding outputs. The network communication module is designed to opti-
mize network I/O performance, thereby enhancing the efficiency of the parallel
computing.

The compute node, similarly, is structured around modules for task manage-
ment, computation, caching, and network communication. The task management
module on each compute node handles the reception and execution of tasks, as
well as the transmission of computed results back to the control node. The
computation module is dedicated to executing the received tasks. The caching
module is responsible for real-time monitoring of the node’s operational status
and for storing computational outputs.

During system initialization, the control node is the first to activate, followed
by the compute nodes, which come online and periodically report their capabil-
ities, performance metrics, and current status. The control node continuously

6 F. Author et al.

new ready running terminated

exception

wait

enter
queue

task finished

heartbeat
failure

heartbeat
failure

IO/Sync.

error/
timeout

distributed to
compute nodes

Fig. 2: The transition of task states

updates this information to maintain a comprehensive and up-to-date view of
all nodes. If the control node fails to receive updates from a compute node within
a predefined time interval, it will mark that node as offline.

3.2 Control nodes

From a task lifecycle perspective, tasks transition through several states,
including new, ready, running, waiting, exception, and terminated. Initially, the
control node creates the task and places it in the task queue, at which point the
task is in the ready state. The control node then decomposes the task based on
its type and distributes it to one or more appropriate compute nodes, moving
the task to the running state. During computation, if multiple threads within a
compute node are involved, the task may enter a waiting state. Once the compute
node completes the assigned task, it returns the results to the control node,
indicating the task’s completion for that node. If a compute node encounters
an issue, such as a timeout or going offline, the task transitions to an exception
state. After the failure of (e.g., a user-defined count) successive heartbeat signals,
the task is marked as in the terminated state. The state transition of a task is
illustrated in Figure 2.

Paor includes control nodes and compute nodes, with computing devices
encompassing hardware of various architectures. The control node assigns tasks
to the most suitable computing device based on the nature of the task. Task
distribution is handled through the send_task function, which first analyzes
its parameters to verify the existence of a corresponding registered function.
Subsequently, tasks are allocated to one or more nodes based on task priority
and node performance. Additionally, space is reserved in the cache to store the
results of the computations.

3.3 Compute nodes

3.3.1 Writing and registering computing tasks One of the primary re-
sponsibilities of compute nodes is executing parallel computing tasks, which
necessitates the proper design and registration of these tasks. Users can tailor
different types of computing functions according to the specific hardware charac-
teristics of the compute nodes. For instance, if a compute node is equipped with

Parallel Computing on RTEMS 7

multi-core CPUs, it is particularly suited for executing parallel programs opti-
mized for CPU architectures. Conversely, if the compute node includes additional
devices such as GPUs, it becomes appropriate to incorporate GPU-accelerated
programs. To facilitate this, we have developed a basic environment for compute
nodes. This environment includes essential functionalities for writing and reg-
istering computing tasks, as well as a comprehensive compilation and runtime
environment for executing parallel programs.

When developing parallel programs, users need to focus primarily on two
key aspects: defining her computations in a function F and adding the function
F into the registered function list. The implementation of these functions can
rely on external environments, such as libraries and header files, which can be
integrated into the program as needed.

For example, if the compute node hardware only has multi-core CPUs, it is
suitable for parallel computing programs with CPUs. If the compute node con-
tains devices such as GPUs, it is suitable to add GPU type computing programs.

Paor provides the registration basis and environment for computing pro-
grams. After adding the computation function, the user compiles it with the
provided compilation tool until it succeeds. Generate an executable program af-
ter successful compilation. The compute node runs this program by first commu-
nicating with the control node to report computing power and other information,
then registering the computing function and reporting the running status in real
time. The compute node architecture aims to provide flexibility and scalability
to adapt to different configurations and requirements. Subsequent chapters will
elaborate on configuration, startup process, parallel computing, and communi-
cation mechanisms, laying the foundation for efficient system operation.

Paor offers a foundational mechanism for the registration and execution of
parallel tasks. After the user adds a computational function, it must be com-
piled using the provided compilation tools. Upon successful compilation, an exe-
cutable program is generated. The compute node executes this program by first
establishing communication with the control node to report its computational
capabilities, followed by registering the computational function and continuously
reporting its operational status in real time. This design aims to to offer flexibil-
ity and scalability, enabling it to adapt to various hardware configurations and
computational requirements.

Running tasks: After joining the cluster, the compute node continuously mon-
itors the system in real time. Upon receiving a computational task, it invokes the
relevant functions and utilizes the provided parameters to initiate computation,
marking the compute node as "running". Once the computation is completed,
the execution result is written to the specified location in the cache module as
defined during task distribution, and the compute node is subsequently marked
as "idle".

Task synchronization: In Paor, control nodes are responsible for decompos-
ing computational tasks and distributing them across various compute nodes.
This involves segmenting the input data into appropriate portions for parallel
processing and implementing mechanisms for data segmentation, distribution,

8 F. Author et al.

and synchronization. The synchronization of function parameters is managed by
the control node, which partitions the input data and sends it to the compute
nodes before the computational task begins.

After the computation task is dispatched via the send_task function, the
main program continues to execute without blocking until it encounters the wait
function. This approach allows multiple computational tasks to be dispatched
asynchronously, facilitating parallel execution. Such asynchronous execution en-
hances Paor’s flexibility and efficiency, making it particularly suitable for large-
scale parallel computing clusters. It maximizes resource utilization by enabling
the simultaneous execution of multiple tasks, thereby improving overall compu-
tational efficiency.

Upon the completion of computation by the compute node, the wait function
is employed to synchronize and aggregate the results. The main program remains
blocked until the results of all tasks have been successfully received, ensuring the
readiness of the computational outputs. The wait function monitors the return
results of the tasks, retrieving them based on their locations within the cache
module. If a task times out, the wait function alerts the control node, which
then decides whether to retransmit the task or take alternative action.

3.3.2 Computational Operators Paor provides supports of two types of
computational operators: standard operators based on the Basic Linear Algebra
Subprograms (BLAS) library and operators built on custom logic. These op-
erators serve distinct functions: standard BLAS-based operators are primarily
used for fundamental mathematical operations, while custom logic operators are
tailored for more complex computational tasks.

Standard Operators Based on BLAS: Paor utilizes the BLAS library to pro-
vide a standardized computational interface that is compatible with heteroge-
neous compute nodes. BLAS offers three levels of operations: vector-to-vector
(Level 1), matrix-to-vector (Level 2), and matrix-to-matrix (Level 3), all of which
support four types of data precision. Paor leverages cBLAS and OpenBLAS,
thereby enabling parallelization of conventional mathematical operations. By
employing the computational tasks of a parallel program across different nodes,
Paor improves the program’s performance.

Operator based on custom logic: In order to meet more complex computa-
tional requirements, Paor supports user-defined or custom functions to be reg-
istered as computational operators. By using Paor’s APIs, Users can provide
function pointers and summaries to register their own functions. This design
decouples complex logic from the underlying framework, enhancing Paor’s scal-
ability and adaptability.

3.4 Communication Module

The communication module is a critical component of Paor. The control
node establishes listening ports, enabling compute nodes to report their status
and other relevant information to the control node in real time. Communication

Parallel Computing on RTEMS 9

IP header TCP header Custom protocol header Custom protocol data

Fig. 3: The format of an application protocol package

Table 1: The meanings of the protocol header and data for each function
Function Protocol header Protocol Data
send_task 0x0001 function_name, para-1, ..., para-n
heartbeat 0x0002 node_info
send_result 0x0003 taskid, result, type
get_compute_node 0x0004 node_list
get_node_status 0x0005 node_detail
node_online 0x0006 node_info
node_offline 0x0007 node_info
wait 0x0008 para-1, ..., para-n
get_task_result 0x0009 task_id, result, type
send_result_complete 0x000A task_id
apply_for_node 0x000B node_info

between these nodes is facilitated through a custom protocol built on top of the
TCP protocol. This design ensures real-time communication between the control
and compute nodes, thereby enabling the entire system to collaborate effectively
in executing distributed computing tasks.

3.4.1 Communication protocol Paor leverages the existing communication
infrastructure library of the RTEMS operating system to construct the founda-
tional protocol at the IP layer. This IP layer protocol enables the identification
of each node’s address within the network, facilitating communication between
nodes based on their IP addresses.

In addition, a TCP layer protocol is built atop the IP layer protocol. Given
the presence of a caching module (see next section), Paor can support one-to-
many communication, allowing the server to initiate real-time calls to client
software for executing computational tasks, thereby minimizing task latency
associated with network delays. The use of TCP as the communication method
enhances reliability. A custom application layer protocol is constructed on top of
the TCP layer protocol. This application layer protocol is designed with several
API functions, which are encapsulated by the TCP layer protocol and further
encapsulated by the IP layer protocol. The format of the custom protocol is
illustrated in Figure 3.

For each API function offered by the custom protocol, Table 1 illustrates
the meanings of the protocol header and protocol data which are transmitted in
JSON format.

10 F. Author et al.

Server Client N

Client 1Cache

Internet/LAN

…

Fig. 4: Communication model of Paor

3.4.2 Communication model The communication model of Paor is shown
in Figure 4. Using the above protocol, the server program and cache module
in the control node can communicate directly with the client program in the
compute nodes, and the server program can also communicate with the cache
module. However, the client programs are not allowed to communicate directly
with each other.

At startup, the server begins by listening on a specified port, while clients
establish connections through this port. The server retrieves information about
the compute nodes by invoking the API of the cache module, subsequently allo-
cating computational tasks based on the requirements of the tasks and the status
of the nodes. The clients periodically send heartbeat packets to the cache mod-
ule, reporting their status to monitor node health and store computation results.
The server then retrieves these results from the cache module as needed. This
centralized coordination mechanism streamlines the communication architecture
and enhances overall system control.

3.5 Cache module

The cache module provides an interface for compute nodes to report infor-
mation and real-time statistics on various performance metrics of the compute
nodes. It offers the control node access to information about compute nodes for
selecting suitable nodes for computation. The cache module also provides an
interface for the control node to access information about registered functions,
enabling the control node to understand the available functions and their param-
eters on the compute nodes. Additionally, the cache module provides interfaces
for the control node to allocate storage for function parameters and return re-
sults, facilitating data exchange between the control node and compute nodes.
It also offers an interface for compute nodes to write their computation results.

The cache module serves as a critical interface for compute nodes to report
information and provide real-time statistics on performance metrics. It enables
the control node to access detailed information about compute nodes, allowing

Parallel Computing on RTEMS 11

Table 2: Experiment setup
Control node Compute nodes

CPU architecture x86 i386 ARM
Host OS Linux 4.15.0 Linux 4.15.0
Emulator qemu-system-i386 qemu-system-arm
Guest OS RTEMS 5.1 RTEMS 5.1

for the selection of the most suitable compute nodes for computation tasks.
Additionally, the cache module provides an interface for the control node to know
about registered functions, thereby enabling the control node to understand the
available functions and their parameters on the compute nodes.

Furthermore, the cache module facilitates data exchange between the con-
trol node and compute nodes as it offers methods for the control node to allo-
cate storage for function parameters and computation results. It also provides
a method for compute nodes to write their computation results back into the
cache, ensuring efficient data handling and parallel computing.

4 EVALUATION

In this section, we aim to answer the following research questions through
empirical evaluation.

– RQ1: How does Paor perform on computing-intensive tasks?
– RQ2: How does Paor perform on data-intensive tasks?
– RQ3: Are the computational operators implemented in Paor correctly?

To test the correctness and effectiveness of the implementation of heteroge-
neous parallel computing framework based on RTEMS operating system, two
testing programs are commonly used : the π value computation program cpi.c
and the matrix multiplication operation program matrix.c. These programs
served as benchmark tests to evaluate the performance of parallel computing
frameworks on computationally intensive and data-intensive tasks. The simplic-
ity and well-defined mathematical models of these programs make it easier to
verify the accuracy of the results produced by the parallel computing framework.

We conducted experiments in a cluster which consists of several machines.
The control node runs on an Intel i7 8750h CPU with 16 cores and 16G mem-
ory. Each compute node runs on a xilinx-zynq-a9 CPU with 1G memory. Their
hardware and software setup are shown in Table 2.

4.1 Answer to RQ1

The π value computation program is highly parallelizable, as each iteration
can be computed independently without direct data dependencies. This program

12 F. Author et al.

Table 3: Performance on π computation

#CN
Runtime (s) Parallel Speedup

100 1000 10000 100 1000 10000
1 0.00613 0.05448 0.54156 1 1 1
2 0.00321 0.02789 0.27818 1.909 1.953 1.947
3 0.00216 0.01957 0.19242 2.737 2.783 2.814

involves a large number of computational operations, making it ideal for evalu-
ating the performance of parallel computing frameworks on computing-intensive
tasks that require high computational power.

The control node sends data to each compute node through send_task, and
each node obtains its own computing task. After the computing task is com-
pleted, the result is returned to the control node. Using clusters of 1∼3 compute
nodes (Column #CN) and loop iterations of 100, 1000 and 10000 for each test
respectively, the runtime and parallel speedup of the π computing program are
shown in Table 3.

Table 3 shows that Paor can run well on RTEMS and exposes nice parallel
efficiency. For each loop iteration case, the π programs best when using three
compute nodes and obtains over 2.7× parallel speedup.

4.2 Answer to RQ2

Matrix multiplication is a classic parallel computing problem, where multi-
plication operations can be decomposed into independent sub-problems, each of
which can be computed in parallel. Matrix multiplication involves a large amount
of data exchange and memory access, demanding high memory and communica-
tion performance. Therefore, matrix multiplication is commonly used to evaluate
the performance of parallel computing frameworks on data intensive tasks, and
it can be tested and compared on dataset of different scales.

To test the performance of matrix multiplication matrix.c on the RTEMS
operating system„ we evaluate Paor’s performance using the CTRMM function
(a Blas matrix operation) in the GSL library which is a widely used mathemat-
ics library in real-world software. The function computes the following matrix-
matrix products, using the scalar α, rectangular matrix B, and triangular ma-
trix A, i.e., B = αAB. We leverage three sets of matrices of 50*50, 500*500,
and 3000*3000, respectively. The experimental results, i.e., runtime and parallel
speedup, are shown in Table 4.

The results that 1) with the increase of matrix size, the program requires
more runtime as expected; 2) with the increase of compute nodes, the program
runs faster; 3) the program obtains the largest speedup (i.e., 14.120) at the case
of 6 compute nodes and 3000*3000 matrix.

Parallel Computing on RTEMS 13

Table 4: Performance on the CTRMM operator in GSL library

Matrix size
Runime (s) Parallel Speedup

1CN 3CN 6CN 1CN 3CN 6CN
50*50 0.201 0.115 0.109 1 1.748 1.844

500*500 24.690 6.530 5.946 1 3.781 4.153
3000*3000 4355.385 725.405 308.463 1 6.004 14.120

––––––––––-RTEMS App Init–––––––––––-
Init Network ...
Ethernet address 0:0:1:1:1:1
PCI IDs: 0x8086 0x1229 0x1af4 0x1100 0x2
Chip Type: 1
Network init successful!
******************Net Client main******************
input <–- A: 3 * 3
4.000000 0.000000 0.000000
0.000000 0.000000 0.000000
1.000000 0.000000 1.000000
cblas_ctrsm result –-> B: 3 * 3
0.500000+0.000000*I 2.500000+0.000000*I -7.500000+0.000000*I
2.750000+0.000000*I -4.750000+0.000000*I 10.750000+0.000000*I
0.250000+0.000000*I 0.750000+0.000000*I 3.250000+0.000000*I

Fig. 5: The test result of CTRMM operator in BLAS

4.3 Answer to RQ3

To verify the correctness of the computational operators in Paor, we con-
structed test inputs for each operator using various data types, including single
precision, double precision, real numbers, and complex numbers. The experimen-
tal results confirm the correctness of all 142 BLAS operators integrated within
the Paor framework. As an example, Figure 5 shows the test result of CTRMM
operator in BLAS.

Building on the BLAS operators, we developed and registered a new operator
function named user-blas-sgemmvv, defined as Y = X×A×B, where A and B
are matrices, X and Y are vectors. The test result for this operator is confirmed
correct and presented in Figure 6. Overall, 142 BLAS operators and user-defined
operator mechanism are correctly implemented, whose results are not shown here
due to page limit.

14 F. Author et al.

––––––––RTEMS App Init––––––––-
Init Network ...
Ethernet address 0:0:1:1:1:1
PCI IDs: 0x8086 0x1229 0x1af4 0x1100 0x2
Chip Type: 1
Network init successful!
****************Net Client main******************
user-defined: user-blas-sgemmvv
input <–- A: 4 * 3
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
7.000000 8.000000 9.000000
8.000000 7.000000 6.000000
input <–- B: 3 * 2
5.000000 4.000000
3.000000 2.000000
1.000000 2.000000
result ––> C: 4 * 2
14.000000 8.000000
41.000000 26.000000
68.000000 44.000000
67.000000 46.000000
user-defined: user-blas-sgemmvv result ––> Y: 4
30.000000 93.000000 156.000000 159.000000

Fig. 6: The test result of user-defined operator user-blas-sgemmvv

5 RELATED WORK

MPI [18] was originally designed for high-performance communication on
large-scale parallel machines. It first provides the basic communication func-
tion interface used for inter process communication, and then communication
mode extension, process creation management, environment management, lan-
guage constraints, and parallel I/O [1]. Recently it adds support of C++ types
and unilateral communication functions etc. MPICH [2] is a high-performance,
standard compatible MPI implementation. Open MPI [5] is an open-source im-
plementation of MPI. Jin et al. [15] studied the mixed programming model of
MPI and OpenMP in multi-core parallel systems. Agbaria et al. [12] proposed
an MPI implementation LMPI for Linux operating systems. However, the above
implementations are quite complex for embedded and realtime devices.

Moreover, some research teams have proposed several parallel programming
models for heterogeneous systems. For example, NVIDIA launched CUDA for
GPGPUs [10]. PGI and multiple companies developed OpenACC [11]. Microsoft
released C++ AMP [9]. However, these parallel models are not universal, as they

Parallel Computing on RTEMS 15

are designed for those heterogeneous systems with specific requirements, thereby
leading to low scalability and portability.

For systems based on multi-CPU and multi-GPU architectures, OpenCL [6]
provides strong supports. For instance, based on OpenCL, Samsung Electronics
released SNUCL [16] framework that supports Cell processors, ARM proces-
sors, and digital signal processors. Kronos [13,16] released a high-level program-
ming model SYCL based on OpenCL, which greatly simplifies the interfaces of
OpenCL by using upper layer interfaces, and enhances the flexibility of pro-
gramming. Kim et al. [17] proposed a framework that treats GPGPUs as device
side in the OpenCL model. By writing applications for a single GPU and then
porting them to a GPGPU system containing multiple GPUs, these applications
can fully utilize the computing power of all GPUs resources.

It’s worthwhile to notice that the methods or implementations outlined above
were not applied to or unsuitable for embedded and realtime devices with het-
erogeneous architectures.

6 CONCLUSION

We present and implement a heterogeneous parallel programming frame-
work Paor on the RTEMS operating system, which is optimized and suitable
for embedded and real-time devices. Paor provides several easy-to-use APIs to
facilitate that computing devices of different architectures can collaborate in
executing computing-intensive or data-intensive tasks on RTEMS operating sys-
tem. Moreover, Paor provides supports for computational operators, including
standard operators based on BLAS (Basic Linear Algebra Subprograms) and
user-defined operators, thereby facilitating the parallelization of conventional
mathematical computations. Experimental results in a heterogeneous comput-
ing environment show that Paor performs well on both computing-intensive and
data-intensive tasks.

References

1. The mpi-2: Extensions to the message passing interface. http://www.mpi-forum.
org/docs/mpi-20-html/mpi2-report.html

2. Mpich. http://www.mcs.anl.gov/mpi/mpich1/
3. Mpich2. http://www.mcs.anl.gov/mpi/mpich2/
4. Mvapich and mvapich2 project. http://mvapich.cse.ohio-state.edu/
5. Open mpi: Open source high performance computing. http://www.open-mpi.org
6. Opencl: Open computing language. https://www.khronos.org/opencl/
7. Opencl: Open computing language version 3.0. https://registry.khronos.

org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#_the_opencl_
architecture

8. Openmp: Open multi-processing. https://www.openmp.org/
9. Microsoft corporation. c++ amp: Language and programming modes. https://

www.openacc-standard.org/ (2013)

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www.mcs.anl.gov/mpi/mpich1/
http://www.mcs.anl.gov/mpi/mpich2/
http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org
https://www.khronos.org/opencl/
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#_the_opencl_architecture
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#_the_opencl_architecture
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#_the_opencl_architecture
https://www.openmp.org/
https://www.openacc-standard.org/
https://www.openacc-standard.org/

16 F. Author et al.

10. Nvidia cuda toolkit. https://www.developer.nvidia.com/cuda-downloads/
(2017)

11. Openacc: Directives for accelerators. https://www.openacc-standard.org/
(2017)

12. Agbaria, A., Kang, D.I., Singh, K.: Lmpi: Mpi for heterogeneous embedded dis-
tributed systems. In: International Conference on Parallel & Distributed Systems
(2006)

13. Alpay, A., Heuveline, V.: Sycl beyond opencl: The architecture, current state and
future direction of hipsycl. In: IWOCL ’20: International Workshop on OpenCL
(2020)

14. Burns, G., Daoud, R., Vaigl, J.: LAM: An open cluster environment for MPI (1994)
15. Haoqiangjin, Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.:

High performance computing using MPI and OpenMP on multi-core parallel sys-
tems. Parallel Computing 37(9), 562–575 (2011)

16. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: Snucl: an opencl framework for
heterogeneous cpu/gpu clusters. In: International Conference on Supercomputing
(2012)

17. Kim, J., Seo, S., Lee, J., Nah, J., Lee, J.: OpenCL as a unified programming model
for heterogeneous CPU/GPU clusters. In: Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2012,
New Orleans, LA, USA, February 25-29, 2012 (2012)

18. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Ver-
sion 4.1 (Nov 2023), https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.
pdf

19. OpenMP Group: OpenMP Application Programming Interface Ver-
sion 5.2 (Nov 2021), https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf

https://www.developer.nvidia.com/cuda-downloads/
https://www.openacc-standard.org/
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

	Parallel Computing on RTEMS Operating System

