
LLM Collaboration with Multi-Agent Reinforcement Learning

Shuo Liu, Tianle Chen*, Zeyu Liang*, Xueguang Lyu, Christopher Amato†

Khoury College of Computer Sciences,
Northeastern University

Boston, MA, 02115, USA
{liu.shuo2, chen.tianle, liang.zey, lu.xue, c.amato}@northeastern.edu

Abstract

A large amount of work has been done in Multi-Agent Sys-
tems (MAS) for modeling and solving problems with multi-
ple interacting agents. However, most LLMs are pretrained
independently and not specifically optimized for coordina-
tion. For example, existing LLM fine-tuning frameworks rely
on individual rewards, which require complex reward de-
signs for each agent to encourage collaboration. To address
this challenge, we model LLM collaboration as a cooper-
ative Multi-Agent Reinforcement Learning (MARL) prob-
lem. We develop a multi-agent, multi-turn algorithm, Multi-
Agent Group Relative Policy Optimization (MAGRPO), to
solve it, building on current RL approaches for LLMs as
well as MARL techniques. Our experiments on LLM writing
and coding collaboration demonstrate that fine-tuning multi-
ple LLMs with MAGRPO enables agents to generate high-
quality responses efficiently through effective cooperation.
Our approach opens the door to using MARL methods for
LLM collaboration and highlights the associated challenges.
Our code is available at https://github.com/OpenMLRL/CoMLRL.

Introduction
State-of-the-art LLMs have demonstrated remarkable ca-
pabilities across diverse domains (Grattafiori et al. 2024;
Achiam et al. 2023; Anil et al. 2025). To adapt to specific
applications or align with human preferences, fine-tuning
has emerged as a critical training stage. Compared to su-
pervised fine-tuning, Reinforcement Learning (RL) enables
more generalizable learning for complex, multi-turn tasks
through human-aligned reward design, making it an impor-
tant technique for fine-tuning (Ouyang et al. 2022; Guo et al.
2025; Ziegler et al. 2019).

Likewise, Multi-Agent Systems (MAS) have been ex-
tensively studied over the past decades, with substantial
progress in modeling and solving problems involving multi-
ple agents (Weiss 1999; Van der Hoek and Wooldridge 2008;
Shoham and Leyton-Brown 2009; Stone and Veloso 2000).
In particular, advances in cooperative MAS have demon-
strated strong potential for enabling effective collaboration
in distributed settings, such as games, robotics, and traffic
control (Samvelyan et al. 2019; Vinyals et al. 2017; Berner
et al. 2019; Wiering 2000; Liu et al. 2022; Xiao et al. 2025).

* These authors contribute equally.
† Corresponding author: c.amato@northeastern.edu.

These developments motivate the application of MAS prin-
ciples and techniques to LLM collaboration, where multiple
LLMs working together can solve more complex tasks more
robustly and efficiently.

There has been some recent work on coordinating multi-
ple LLMs. Some approaches implement coordination at the
inference stage, enabling agents to interact through debate,
discussion, or verification (Du et al. 2023; Wu et al. 2023a;
Lifshitz, McIlraith, and Du 2025). These methods operate at
the prompt level, with fixed models that are not tuned toward
coordination-centric objectives. The agents may have con-
flicting answers or spread incorrect information to other par-
ticipants, limiting performance (Cemri et al. 2025; Estornell
and Liu 2024). Moreover, the design of effective prompts
remains difficult and unclear. Other approaches fine-tune
agents independently with individual or role-conditioned re-
wards. However, they require carefully curated rewards for
each individual or role (Liu et al. 2025a; Subramaniam et al.
2025), and, as independent learning methods, lack conver-
gence guarantees (Tan 1993).

We model LLM collaboration as a cooperative MARL
problem (Albrecht, Christianos, and Schäfer 2024; Amato
2025) and formalize it as a Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP) (Oliehoek
and Amato 2016). In LLM collaboration, multiple trainable
LLMs generate responses synchronously based on their in-
dividual prompts. The external environment evolves accord-
ing to the joint responses until the dialog ends. This gen-
eral model allows a wide range of problems to be modeled
and solved using versions of MARL algorithms. Following
the efficient practice of Group Relative Policy Optimization
(GRPO) (Shao et al. 2024), we propose Multi-Agent GRPO
(MAGRPO) that trains LLMs in a multi-turn setting. MA-
GRPO leverages centralized group-relative advantages for
joint optimization, while preserving decentralized execution
for each agent. The resulting method builds off of state-of-
the-art LLM approaches in GRPO and MARL approaches
for centralized training and decentralized execution, such
as MAPPO (Yu et al. 2022). Our experiments demonstrate
that MAGRPO is able to learn different cooperation schemes
while producing efficient and high-quality responses.

Our contributions can be summarized as follows: (i) We
model the LLM collaboration as a cooperative MARL prob-
lem, where multiple LLMs cooperate to generate joint re-

ar
X

iv
:2

50
8.

04
65

2v
7 

 [
cs

.A
I]

  9
 D

ec
 2

02
5

https://arxiv.org/abs/2508.04652v7


sponses; (ii) We develop the MAGRPO algorithm, which
optimizes agent cooperation through aligned rewards while
maintaining decentralized execution to maintain efficiency;
(iii) Our experiments demonstrate that fine-tuning with MA-
GRPO improves both response efficiency and quality in
writing and coding collaboration; (iv) We provide an analy-
sis of the limitations of existing approaches and outline open
challenges in applying MARL to LLM collaboration.

Related Work
Test-Time Multi-Agent Interaction Recent work em-
ploys multiple agents with specialized roles interacting
through diverse pipelines at test-time to enhance response
quality. In multi-agent debate, agents iteratively formulate
positions by reviewing other agents’ outputs, where the fi-
nal decision or answer is determined by majority voting or
a summarizer (Du et al. 2023; Chan et al. 2023; Liang et al.
2024). Role-based approaches allocate tasks across special-
ized agents (Wu et al. 2023a; Qian et al. 2024; Hong et al.
2023). An agent may function as a verifier to assess the cor-
rectness of outputs (Skreta et al. 2023; Lifshitz, McIlraith,
and Du 2025), or as a macro-planner to orchestrate work-
ers’ responses. However, these multi-agent frameworks rely
on prompt-level interactions among agents, often leading to
ineffective communication and computational inefficiency.
Moreover, the design of effective prompts and role assign-
ment remains unclear, as prompts usually fail to reliably
guide agent behavior, enforce role adherence, or support co-
herent coordination across tasks. These limitations motivate
us to fine-tune LLMs in MAS to improve their cooperation.

Multi-Agent Fine-Tuning Recent work has explored
fine-tuning LLMs to improve their performance across di-
verse domains, e.g., arithmetic reasoning, navigation, and
hidden-role games (Ma et al. 2024; Sarkar et al. 2025).
These approaches typically employ individual rewards or re-
wards conditioned on specific roles (Liu et al. 2025a; Subra-
maniam et al. 2025; Zhang et al. 2025). Such reward struc-
tures often require careful manual specification, and their
underlying rationale is rarely well justified. The misaligned
or conflicting incentives can hinder effective coordination.
Moreover, these methods lack convergence guarantees, as
each agent learns independently in a non-stationary environ-
ment where other agents are simultaneously updating their
policies. In this paper, we focus on cooperative scenarios,
where LLMs are trained with verified, human-aligned re-
wards.

Cooperative MARL for LLM Collaboration
Since LLMs can act as a special class of agents, we lever-
age advances in MAS to improve their collaboration. We
model LLM collaboration as a cooperative MARL problem
and outline its unique challenges. We formalize this problem
as a Dec-POMDP, as shown in Figure 1.

LLM Collaboration
LLM collaboration is the problem where LLMs coopera-
tively solve a class of tasks in MAS. Tasks are specified in
language and provided to the LLMs as prompts. Each LLM

generates a response synchronously in response to its own
instructions. All responses jointly form a solution to the task.

Most tasks cannot be resolved in one turn. Users, external
models, or systems validate the solutions and provide addi-
tional requirements or suggestions for LLMs. These com-
ponents also serve as part of the environment for LLM col-
laboration, whose states may change based on the agents’
outputs. The updates are embedded into prompts for subse-
quent turns. This iterative process continues until the task is
successfully completed or a predefined turn limit is reached.

As discussed by a number of companies (NVIDIA 2024;
Anthropic 2024), a team of agents could generate a com-
plex codebase. The code would be difficult, costly, and time-
consuming to generate with a single agent, but a group of
LLMs could do so quickly and cheaply. None of these agents
is self-interested, but they can be trained using a scheme
such as the one in this paper. Using a joint reward allows
agents to specialize as needed to complete the task without
complex prompt or reward engineering.

Problem Formalization
We formalize LLM collaboration as a subclass of the cooper-
ative MARL problem, considering LLMs are agents and the
types of problems they are solving. This problem is a form
of Dec-POMDP (Oliehoek and Amato 2016), which allows
cooperation through a joint reward while preserving scal-
able decentralized control. We show 2 instantiations of our
framework in writing and coding tasks in the experiments.

Mathematically, our LLM Dec-POMDP is defined by a
tuple ⟨I,S, {Oi}, {Ai}, R, T,H⟩.
• I = {1, · · · , n} denotes the set of n LLM agents, each

instantiated with a pre-trained language model.
• S denotes the full global state space. At turn t, a full state
st = (sacc

t , susr
t ) consists of parts that are accessible in

the model and provided to the reward model sacc
t ∈ Sacc

(e.g., external models or systems), and the inaccessible
user state susr

t ∈ Susr that updates over time but is not
maintainable. In a Dec-POMDP, the state can not be di-
rectly observed by the agents.

• Oi is the observation space for agent i with O = ×iOi

the joint observation space. A local observation oi,t con-
sists of natural language instructions (i.e., prompts), pro-
viding a partial and noisy view of st.

• Ai is the action space for agent i with A = ×iAi the
joint action space. A local action ai,t is a response in
natural language to the given prompt.

• R : Sacc × A → R is the joint reward function im-
plemented via predefined rules or a pretrained reward
model. At turn t, the joint rewards rt are determined by
the accessible part of current state sacc

t and the agents’
joint action at = {a1,t, · · · , an,t}.

• T : S × A → ∆(S) is the underlying stochastic state
transition function. At turn t, the agents’ joint actions at
induce a shift to a new state st+1 ∼ T (·|st,at), which
reflects the updates in the user state and the states of ex-
ternal models and systems.

• H is the episode horizon, i.e., the turn limit of the dialog.



Reward Model

. . .User

System Environment

Policy  
Optimization

MAGRPO Trainer

Agent 1

Agent 2. . .

Agent n

Dec-POMDP

External

User

Agent 1

Agent 2. . .

Agent n

External

. . .

. . .

Return

Group Relative 
Advantage

Equation 1

. . .
Policy Gradient

Equation 2

Figure 1: Illustration of Dec-POMDP and our MAGRPO algorithm.

In Dec-POMDP, since the states are not directly observed,
each agent maintains its local observation-action history
h = {h1, · · · , hn} to infer information about the state. A
solution to a Dec-POMDP is a joint policy that maximizes
the expected cumulative reward, π∗ = {π∗

1 , · · · , π∗
n} =

argmaxπ Eπ

[∑H−1
t=0 R(sacc

t ,at)
]
. A joint policy is a set of

local policies πi, which condition on the local observation-
action history hi,t = {oi,0, ai,0, . . . , oi,t}.

RL methods for Dec-POMDPs have become a popular
topic (e.g., (Foerster et al. 2018b; Lowe et al. 2017; Foerster
et al. 2018a; Rashid et al. 2020; Wang et al. 2021; Yu et al.
2022; Albrecht, Christianos, and Schäfer 2024; Lyu et al.
2023; Marchesini et al. 2025)) with methods successful at
scaling to large state, action, and observation spaces. Many
methods use Centralized Training for Decentralized Execu-
tion (CTDE), where they use some centralized information
during training (e.g., a centralized value function estimate)
but are still able to execute in a decentralized manner when
training is completed (Amato 2024).

Challenges in LLM Collaboration
LLM collaboration presents unique challenges compared to
traditional MARL problems, where LLM agents receive and
process tasks through natural language.

Representations in Natural Language Unlike traditional
cooperative MARL agents, LLM agents operate over natural
language, receiving instructions and generating responses as
sequences of tokens. MARL approaches could model this
problem at the token or sequence level. At the token level,
the number of actions and observations is smaller, but the
problem horizon can be very long. At the sequence level, the
action and observation space is much larger, but the horizon
is much shorter. Moreover, token-level rewards are often un-
informative, as both queries and responses must form coher-
ent and semantically meaningful structures. As adopted in

prior RL methods (Ouyang et al. 2022; Rafailov et al. 2023),
we model each agent’s decision-making process as a direct
mapping from input instructions to complete responses to
enable efficient and stable training. Nevertheless, the best
modeling and solution approaches remain an open question.

Training Paradigm As mentioned above, many MARL
methods use centralized training for decentralized execu-
tion (CTDE). Unfortunately, standard CTDE methods use
centralized value models in the form of centralized critics
(Foerster et al. 2018b; Lowe et al. 2017; Yu et al. 2022) or
mixers in value decomposition methods (Rashid et al. 2020;
Wang et al. 2021), which allow additional information dur-
ing training but do not scale well to very large action and ob-
servation spaces (such as those in LLM collaboration). Con-
versely, Decentralized Training and Execution (DTE) meth-
ods (Amato 2025) train a set of models, one for each agent
in a decentralized manner, which are typically more scalable
but do not use additional information during training (even
when it is available). It is an open question which paradigm
to use to maximize performance while maintaining scalabil-
ity in the LLM collaboration problem. In this paper, we bal-
ance decentralized execution with centralized training using
group-based Monte Carlo estimates. Experiments show the
effectiveness of our approach on short-horizon tasks.

MAGRPO
We propose the Multi-Agent GRPO (MAGRPO) algorithm
to jointly train LLM agents in MAS while maintaining de-
centralized execution.

Algorithm 1 shows the procedure of MAGRPO. Given a
dataset D containing task information (e.g., the descriptions
of coding problems), n LLMs that are optimized, each with a
policy parameterized by θi and guided by a (shared) reward
model R. In each episode, a task is sampled from the given
dataset D, which is used to construct initial observations



Algorithm 1: MAGRPO

Require: Dataset D, n pretrained LLMs with policies
{πθ1 , · · · , πθn}, reward model R, generation group size
G, learning rate α

1: for each episode do
2: Sample a task ∼ D
3: Initialize observations oi,0, ∀i ∈ I, according to the

task, and o0 = {o1,0, · · · , on,0}
4: hG

i,0 ← oi,0, ∀i ∈ I, and hG
0 = {hG

1,0, · · · , hG
n,0}

5: for turn t = 0 to H − 1 do
6: Generate a group of responses aGi,t ← πθi(·|hG

i,t),

∀i ∈ I, where hG
i,t = {h(1)

i,t , · · · , h
(G)
i,t }, a

G
i,t =

{a(1)i,t , · · · , a
(G)
i,t }, and aG0 = {aG1,t, · · · , aGn,t}

7: Obtain joint rewards rGt from system
8: Receive new observations oGi,t+1, and update his-

tory hG
i,t+1 ← {h

G
i,t, a

G
i,t, o

G
i,t+1}, ∀i ∈ I

9: end for
10: for turn t = H − 1 to 0 do
11: Calculate return R

(g)
t ←

∑H−1
τ=t r

(g)
τ , ∀g ∈ G

12: Estimate Â
(g)
t , ∀g ∈ G according to Equation 1

13: Calculate J(θi), ∀i ∈ I according to Equation 2
14: θi ← θi + α∇θiJ(θi), ∀i ∈ I
15: end for
16: end for
17: return πθ = {πθ1 , · · · , πθn}

o0 = {o1,0, · · · , on,0} and histories h0 = {h1,0, · · · , hn,0}.
Taking inspiration from the single-agent GRPO algorithm
(Shao et al. 2024), at each turn t, each agent takes action by
generating a group of responses aGi,t = {a

(1)
i,t , · · · , a

(G)
i,t } fol-

lowing its policy πi(·|hG
i,t) based on its observation-action

history hG
i,t = {h(1)

i,t , · · · , h
(G)
i,t }. The actions of individ-

ual agents are aggregated to form a group of joint actions
aGt = {aG0,t, · · · , aGn,t}. The agents receive a group of joint
rewards rGt for their responses aGt , which conditions on the
accessible part of the state R(·|sacc,G

t ,aGt ). The joint actions
triggers the transition T (·|sGt ,aGt ), where agents receive new
observations oGi,t+1 = {o(1)i,t+1, · · · , o

(G)
i,t+1} and use them to

construct histories hG
i,t+1 = {hG

i,t, a
G
i,t, o

G
i,t+1}. This process

continues until terminated at turn H or the task is completed.
We employ stochastic gradient descent to train agents at

the end of each episode. Without explicit value models, esti-
mating history-action values incurs high variance. To stabi-
lize training, we estimate the expected return of the current
history by averaging over a group of Monte Carlo samples of
the joint return RG

t = {R(1)
t , · · · , R(G)

t }. As a result, we are
able to generate a centralized estimate (common in MARL)
without a large value model. For each turn t, the advantage
of each joint action in the group is calculated as,

Â
(g)
t = R

(g)
t −

1

G

G∑
g=1

R
(g)
t , (1)

where R
(g)
t =

∑H−1
τ=t r

(g)
τ . Inspired by GRPO (Shao et al.

2024; Liu et al. 2025b), and MAPPO (Yu et al. 2022), the
centralized advantage values can be used to update policy πi

(parameterized by θi) for each agent i. MAGRPO does not
have importance sampling and thereby epsilon clipping for
simplicity, and the KL divergence coefficient is set to be 0 to
encourage greater policy deviation from the base model,

J(θi) = Eo0∼D,hG∼πθ

[
1

G

G∑
g=1

Â
(g)
t log πθi(a

(g)
i,t |h

G
i,t)

]
.

(2)

Experiments
We evaluate MAGRPO on LLM writing and coding collabo-
ration. Datasets, reward specifications, and additional results
are provided in the Appendix.

Writing Collaboration
We explore LLM collaboration for article writing using MA-
GRPO across 2 classic tasks: summarization and expansion.

TLDR Summarization When reading a long article,
readers often seek to quickly grasp its core ideas. If the topic
is of interest, they may wish to delve deeper into specific de-
tails while still avoiding a complete reading through the full
document. This calls for a summarization system to gener-
ate summaries at varying levels of detail. We frame this task
using TLDR summarization as an illustrative example.

The TLDR dataset comprises unabridged Reddit posts in
the prompt and concise summaries appended by the au-
thor in the completion. In our experiment, 2 Qwen3-1.7B
agents independently summarize the prompt without us-
ing completion. The first agent functions as a core-idea
(TLDR) generator, producing a concise paragraph, while
the second agent serves as a detailed summarizer, providing
more comprehensive information.

To quantify the summarization quality, we employ a rela-
tively simple combination of 3 metrics. Structure measures
the lengths and the length ratio of the 2 summaries, to en-
sure the TLDR is concise and the detailed summary is suffi-
ciently long. Style consistency is assessed using the normal-
ized Jaccard similarity coefficient, calculated as the ratio of
the intersection size to the union size of unique words (or
n-grams) between responses. A high style consistency re-
ward typically indicates that the summarizers adopt similar
stylistic patterns while avoiding identical wording. Logical
coherence is quantified by counting the occurrences of tran-
sition words. Positive reward is given for using transition
words, but the reward decreases logarithmically as more are
used. These metrics are simple approximations of what more
complex reward models may evaluate. Other (simpler or
more complex) metrics or reward models could also be used.
The total reward combines these metrics through a weighted
summation. More details regarding our reward model and
hyperparameters are provided in the Appendix.

arXiv Expansion Writing a long article typically requires
contributions from multiple writers, each responsible for dif-
ferent sections. As a simple scenario, 2 agents can collabo-



Method Dataset Efficiency Article Quality (%) Return (%)
Speed Response Time Structure Consistency Coherence

Single Model TLDR 64.1 6.6 43.8 97.6 52.8 36.7
arXiv 65.4 6.5 51.2 87.2 71.1 44.9

Parallel Generation TLDR 185.6 2.1 25.9 98.3 56.5 23.2
arXiv 190.6 2.1 71.5 64.2 61.5 59.6

Sequential Generation TLDR 98.7 4.3 33.5 98.5 64.5 21.7
arXiv 85.8 4.3 92.4 97.8 64.3 87.7

One-Round Discussion TLDR 100.4 4.3 35.9 98.8 60.8 22.3
arXiv 95.4 4.3 84.6 71.8 66.0 76.6

MAGRPO (Ours) TLDR 202.3 2.1 98.7 97.1 78.5 94.5
arXiv 193.8 2.1 97.9 96.2 69.7 93.1

Table 1: Performance of MAGRPO against baselines on TLDR and arXiv. Speed (tokens/s) and response time (s) are measured
on GeForce RTX 5090s. Results are normalized to the return scale. Bolds indicate the best performance on each dataset.

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) TLDR

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) arXiv

Metrics
Structure
Consistency
Coherence
Total

(a) TLDR summarization

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) TLDR

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) arXiv

Metrics
Structure
Consistency
Coherence
Total

(b) arXiv abstract expansion

Figure 2: Normalized returns on writing collaboration: (a) structural wellness (dashed green); (b) style consistency (dashed
red); (c) coherence (dashed orange); (d) total rewards (solid blue). All returns are normalized to the return scale.

rate to generate introductions from the abstract of arXiv
papers. The first agent outlines the research background and
motivation, while the other presents the proposed methods
and their experiments. The combined paragraphs should be
coherent and consistent in style. Similar to the reward model
in TLDR summarization, we employ the same evaluation
metrics as proxies, with threshold hyperparameters specif-
ically adjusted for this task.

Baselines We adopt a single model and 3 multi-agent
methods as our baselines. To minimize the influence of
prompts on our comparison, we keep the task description
fixed and only add minimal instructions. In the single-agent
baseline, we prompt with the article, the agent’s role (sum-
marizer or expanding writer), and specific format instruc-
tions. Naive concatenation builds on it by dividing the task
into subtasks, assigning each agent a specific portion to
complete in parallel without explicit communication. The
sequential pipeline introduces one-way communication, al-
lowing one agent to respond based on both the task descrip-
tion and the other agent’s output. The one-round discussion
baseline enables bidirectional communication: agents first
receive the same prompts as in naive concatenation, then the
prompts are augmented with the other’s first-turn response in
the second turn. All baseline methods operate without fine-
tuning and depend solely on prompt-level interactions. De-
tailed prompts for each baseline are in the Appendix.

Results In this experiment, we apply MAGRPO to opti-
mize the dual Qwen3-1.7B system in one turn. Figure 2a and
Figure 2b show the evaluation results on TLDR and arXiv
over 10 runs. The upward trend on all metric curves indi-
cates that 2 agents gradually cooperate to generate coher-
ent and consistent content with a well-organized structure.
In the TLDR summarization, while the structure and log-
ical coherence monotonically increase throughout training,
the style consistency curves exhibit a decrease in the first
100 steps. This occurs as agents temporally diverge in styles
to optimize other cooperative objectives, but their styles are
gradually realigned and stabilized with sufficient training.

As shown in Table 1, MAGRPO is 3 times faster com-
pared to the single Qwen3-4B model, which has a compara-
ble number of parameters to our dual Qwen3-1.7B system.
Despite receiving detailed instructions, Qwen3-4B fails to
produce well-structured responses. A similar issue appears
in TLDR summarization but not in arXiv expansion under
multi-agent settings. This is because the outputs of homo-
geneous agents are naturally similar in length, which fortu-
itously aligns with the preference of the reward model.

Among the multi-agent baselines, parallel generation is
the only one that achieves a comparable speed to ours,
but it fails to generate well-structured and coherent texts
due to the lack of cooperation. Sequential generation and
discussion-based approaches occasionally enhance coordi-
nation through specific prompts. However, they still under-



0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) HE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) HE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(a) Single-Turn MAGRPO on HE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) HE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) HE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(b) Multi-Turn MAGRPO on HE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) CHE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) CHE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(c) Single-Turn MAGRPO on CHE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) CHE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

 (%
) CHE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(d) Multi-Turn MAGRPO on CHE

Figure 3: Normalized returns on coding collaboration: (a) structural wellness (dashed grey); (b) syntax correctness (dashed
green); (c) Test score (dashed red); (d) cooperation rewards (dashed yellow); (e) total return (solid blue).

perform ours in efficiency and coherence, resulting in lower
total return. The limited effectiveness of prompt-instructed
coordination constrains their scalability to more complex
scenarios involving large numbers of agents or extended
multi-turn interactions (Estornell and Liu 2024).

Coding Collaboration
In large-scale software development, numerous develop-
ers collaborate to implement complex systems. Employing
LLMs as developers is a promising direction, but coordinat-
ing them is challenging due to diverse cooperation schemes
and complex failure modes. We simplify this task by using 2
Qwen2.5-Coder-3B agents to generate Python functions col-
laboratively. A helper agent produces auxiliary functions to
support a main function generator, without any direct com-
munication. The outputs from both agents, along with re-
quired libraries, are aggregated into complete code snippets.

HumanEval We evaluate MAGRPO on the HumanEval
(HE) dataset, which contains 164 handwritten programming
problems, each containing a natural language description
(prompt), a function signature (entry point), and a set
of unit tests (test). To guide learning, we design a level-
based reward model that prioritizes fundamental aspects of
code generation. Structural integrity verifies the presence
and correctness of both main and auxiliary function defini-
tions; syntactic correctness ensures compliance with Python
syntax; test pass rate assesses functional correctness based
on the proportion of successfully passed unit tests; and a co-
operation quality bonus is granted when the main function
properly invokes and utilizes the auxiliary function. Rewards
are accumulated only when all requirements at each preced-
ing level are satisfied.

CoopHumanEval Some entries in HumanEval (HE) are
not designed for coding collaboration; certain atomic op-
erations (e.g., strlen(string)) can hardly be decom-
posed in a way that has meaningful cooperation. These
noisy instances bias it towards invalid cooperation, such
as merely wrapping the auxiliary function, thereby mak-
ing training unstable. Thus, we construct a cooperative code
generation dataset, CoopHumanEval (CHE), which com-
prises both original HE problems with cooperative poten-
tial (e.g., prime fib(n)) and additional problems (e.g.,
unique digits(x)). CHE problems are decomposable,
where agents can explore effective cooperation schemes.

Baselines We adopt the fixed and fine-tuned single model,
and 3 multi-agent methods on fixed base models, as our
baselines. In the single-agent setting, the Qwen2.5-Coder-
7B model generates a Python function based on the problem
description in prompt. We also fine-tune this model on the
training set to adapt it to this task. In the multi-agent setting,
2 Qwen2.5-Coder-3B models serve as agents: one generates
a helper function, and the other produces the main. To min-
imize the influence of prompts on our comparison, we keep
the problem description fixed and only add minimal coor-
dination instructions. In the naive concatenation, agents are
informed of their roles and generate outputs in parallel with-
out communication. The sequential pipeline allows the main
agent to respond based on the other’s output. In the one-
round discussion, agents first receive the same prompts as
naive concatenation, then the prompts are augmented with
the other’s last-turn response in the subsequent turns.

Results We optimize the interaction between 2 agents
using single-turn and multi-turn MAGRPO. In the multi-
turn setting, problem descriptions and the agents’ initial re-



Method Dataset Efficiency Code Quality (%) Return (%)
Speed Response Time Structure Syntax Tests Cooperation

Single Model HE 73.1 1.6 100.0 100.0 64.8 – –
CHE 65.5 1.4 100.0 100.0 63.4 – –

Fine-Tuned Single Model HE 72.2 1.6 100.0 99.2 65.6 – –
CHE 60.6 1.4 100.0 100.0 66.7 – –

Naive Concatenation HE 194.9 1.1 96.1 90.6 42.5 22.7 53.9
CHE 189.4 1.1 97.5 95.0 40.1 24.0 54.3

Sequential Pipeline HE 99.6 2.2 98.4 96.5 56.4 35.1 63.1
CHE 97.4 2.0 97.5 96.3 55.2 35.2 62.5

One-Round Discussion HE 82.5 2.8 98.1 94.8 41.2 30.2 57.5
CHE 78.3 2.8 97.5 96.3 41.9 34.8 59.5

Single-Turn MAGRPO (Ours) HE 190.0 1.5 100.0 97.8 61.6 83.4 83.7
CHE 192.4 1.5 98.8 97.5 71.2 83.7 86.0

Multi-Turn MAGRPO (Ours) HE 96.5 2.7 99.7 96.9 68.4 84.9 86.7
CHE 97.1 2.5 98.6 98.2 75.0 86.3 88.5

Table 2: Performance comparison of MAGRPO against baselines on HE and CHE. Speed (tokens/s) and response time (s) are
recorded on GeForce RTX 5090s. Results are normalized to the return scale and averaged over 10 runs; rewards are level-based.
Bolds indicate the best performance of each metric on each dataset.

sponses are provided to static checking (AST) and dynamic
execution models, which report errors for each agent. Ab-
lations of external tools used, including self-evolving and
expert guidance, are provided in the Appendix.

Figure 3a and Figure 3b show the normalized return of
MAGRPO on HE over 10 runs. Single-turn MAGRPO train-
ing improves the syntactical correctness and develops valid
cooperation, while the test pass rate does not show much
progress. As for the multi-turning training, agents are ini-
tially overwhelmed by the external model’s feedback, result-
ing in even lower initial returns. They gradually adopt the er-
ror signals and improve their returns. However, the test pass
rate shows no significant improvement over the single-agent
model, due to noisy entries in the dataset and hence unre-
liable feedback. This reflects the complexity and delicacy
of decentralized coder coordination, where the main agent
must accurately infer the functionality of auxiliary modules
and trust their correctness without communication.

The performance of single-turn and multi-turn MAGRPO
on the CHE dataset is shown in Figures 3c and 3d. Re-
sults show that MAGRPO achieves higher overall returns
and lower variance when trained on CHE over HE. In the
multi-turn setting, although agents initially struggle to in-
terpret the feedback, like training on HE, the returns gradu-
ally improve and eventually surpass those in the single-turn
training. This demonstrates that, when trained on a dataset
with well-defined cooperative structures, agents can learn to
utilize error messages to improve their response quality.

Table 2 presents a performance comparison between MA-
GRPO and baselines on both HE and CHE. By GRPO fine-
tuning, the performance of Qwen2.5-Coder-7B model only
improves slightly as the logic of test problems differs sub-
stantially. Compared to a single model, the naive concate-
nation method has lower test pass rates, as the main agent
may generate code based on incorrect assumptions about
auxiliary functionality. In the sequential pipeline method,
the main agent can provide a backup for the auxiliary func-

tion when it identifies potential vulnerabilities, thereby im-
proving the test pass rate. However, this comes at the cost
of slower inference speed. Although the one-round discus-
sion method involves more communication between agents,
its effectiveness remains limited because the agents’ mutual
adaptations to each other’s last responses can become mis-
aligned. MAGRPO outperforms all baselines on both CHE
and HE by facilitating effective cooperation and leveraging
feedback from the external model. Additional results, in-
cluding pass@k, are presented in the Appendix.

Cooperation Schemes MAGRPO identifies diverse coop-
eration schemes. In some cases, the auxiliary function han-
dles the core logic, while the main agent adds backup logic
or decorations to improve the overall solution. Alternatively,
the main agent may act as a coordinator, decomposing the
problem and assigning subtasks to the auxiliary agent. The
auxiliary function may serve as a strategy filter, guiding
the main agent to generate code for specific cases. While
coordinator and strategy-filter schemes can improve infer-
ence efficiency, they are more prone to syntax and logical
errors. With limited cooperation-oriented training data, the
main agent typically resorts to more conservative roles, i.e.,
fallback or decoration. These cooperation schemes emerge
during training under a relatively simple joint reward. More
refined design patterns will likely be found when training
agents to develop large-scale coding projects.

Conclusion
In this paper, we model LLM collaboration as a cooperative
MARL problem and formalize it as a Dec-POMDP. We pro-
pose the MAGRPO algorithm to optimize agent cooperation
through shared rewards. Our experiments in coding and writ-
ing collaboration show that MAGRPO enables agents to effi-
ciently generate high-quality responses via effective collab-
oration. Our work encourages future exploration of MARL-
based methods for scalable and robust LLM collaboration.



Acknowledgments
This work was partially funded by NSF grants #2044993 and
#2409351. It used Delta and DeltaAI computing resources
at the National Center for Supercomputing Applications
through allocation CIS250443 and CIS250554 from the Ad-
vanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support program, which is supported by NSF grants
#2138259, #2138286, #2138307, #2137603, and #2138296.

We thank Tianle Chen for improving our MARL training
framework for LLM collaboration, CoMLRL, and members
of the Lab for Learning and Planning in Robotics (LLPR) for
the valuable discussion. We thank Gregory Bauer and Brett
Bode for helping us resolve job failure issues.

References
Achiam, J.; Adler, S.; Agarwal, S.; et al. 2023. Gpt-4 tech-
nical report. arXiv preprint arXiv:2303.08774.
Albrecht, S. V.; Christianos, F.; and Schäfer, L. 2024. Multi-
Agent Reinforcement Learning: Foundations and Modern
Approaches. MIT Press.
Amato, C. 2024. An Introduction to Centralized Training for
Decentralized Execution in Cooperative Multi-Agent Rein-
forcement Learning. arXiv 2409.03052. arXiv:2409.03052.
Amato, C. 2025. An Initial Introduction to Cooperative
Multi-Agent Reinforcement Learning. arXiv:2405.06161.
Anil, R.; Borgeaud, S.; Alayrac, J.-B.; et al. 2025. Gem-
ini: A Family of Highly Capable Multimodal Models.
arXiv:2312.11805.
Anthropic. 2023. Collective Constitutional AI: Aligning a
Language Model with Public Input.
Anthropic. 2024. How We Built a Multi-Agent Research
System.
Berner, C.; Brockman, G.; Chan, B.; et al. 2019. Dota 2
with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680.
Cemri, M.; Pan, M. Z.; Yang, S.; Agrawal, L. A.; Chopra,
B.; Tiwari, R.; Keutzer, K.; Parameswaran, A.; Klein, D.;
Ramchandran, K.; Zaharia, M.; Gonzalez, J. E.; and Stoica,
I. 2025. Why Do Multi-Agent LLM Systems Fail?
Chan, C.-M.; Chen, W.; Su, Y.; Yu, J.; Xue, W.; Zhang, S.;
Fu, J.; and Liu, Z. 2023. ChatEval: Towards Better LLM-
based Evaluators through Multi-Agent Debate.
Chen, M. 2021. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.
Du, Y.; Li, S.; Torralba, A.; Tenenbaum, J. B.; and Mordatch,
I. 2023. Improving Factuality and Reasoning in Language
Models through Multiagent Debate. arXiv:2305.14325.
Estornell, A.; and Liu, Y. 2024. Multi-LLM Debate: Frame-
work, Principals, and Interventions. In NeurIPS.
Estornell, A.; Ton, J.-F.; Taufiq, M. F.; and Li, H. 2025. How
to train a leader: Hierarchical reasoning in multi-agent llms.
arXiv preprint arXiv:2507.08960.
Foerster, J.; Chen, R.; Al-Shedivat, M.; Whiteson, S.;
Abbeel, P.; and Mordatch, I. 2018a. Learning with

Opponent-Learning Awareness. In AAMAS 2018: Proceed-
ings of the Seventeenth International Joint Conference on
Autonomous Agents and Multi-Agent Systems.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018b. Counterfactual Multi-Agent Policy
Gradients. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence.
Grattafiori, A.; Dubey, A.; Jauhri, A.; et al. 2024. The Llama
3 Herd of Models.
Guo, D.; Yang, D.; Zhang, H.; et al. 2025. DeepSeek-R1 in-
centivizes reasoning in LLMs through reinforcement learn-
ing. Nature, 645(8081): 633–638.
Hong, S.; Zhuge, M.; Chen, J.; Zheng, X.; Cheng, Y.; Wang,
J.; Zhang, C.; Wang, Z.; Yau, S. K. S.; Lin, Z.; et al. 2023.
MetaGPT: Meta programming for a multi-agent collabora-
tive framework. In The Twelfth International Conference on
Learning Representations.
Liang, T.; He, Z.; Jiao, W.; Wang, X.; Wang, Y.; Wang, R.;
Yang, Y.; Shi, S.; and Tu, Z. 2024. Encouraging Divergent
Thinking in Large Language Models through Multi-Agent
Debate. arXiv:2305.19118.
Lifshitz, S.; McIlraith, S. A.; and Du, Y. 2025. Multi-Agent
Verification: Scaling Test-Time Compute with Multiple Ver-
ifiers. arXiv:2502.20379.
Liu, B.; Guertler, L.; Yu, S.; Liu, Z.; Qi, P.; Balcells, D.; Liu,
M.; Tan, C.; Shi, W.; Lin, M.; et al. 2025a. SPIRAL: Self-
Play on Zero-Sum Games Incentivizes Reasoning via Multi-
Agent Multi-Turn Reinforcement Learning. arXiv preprint
arXiv:2506.24119.
Liu, S.; Wang, Y.; Chen, X.; Fu, Y.; and Di, X. 2022.
SMART-eFlo: An integrated SUMO-gym framework for
multi-agent reinforcement learning in electric fleet manage-
ment problem. In 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC), 3026–3031.
IEEE.
Liu, Z.; Chen, C.; Li, W.; Qi, P.; Pang, T.; Du, C.; Lee, W. S.;
and Lin, M. 2025b. Understanding r1-zero-like training: A
critical perspective. arXiv preprint arXiv:2503.20783.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in Neu-
ral Information Processing Systems.
Lyu, X.; Baisero, A.; Xiao, Y.; Daley, B.; and Amato, C.
2023. On Centralized Critics in Multi-Agent Reinforcement
Learning. Journal of Artificial Intelligence Research, 77:
295–354.
Ma, H.; Hu, T.; Pu, Z.; Boyin, L.; Ai, X.; Liang, Y.; and
Chen, M. 2024. Coevolving with the other you: Fine-tuning
llm with sequential cooperative multi-agent reinforcement
learning. Advances in Neural Information Processing Sys-
tems, 37: 15497–15525.
Marchesini, E.; Baisero, A.; Bathi, R.; and Amato, C. 2025.
On Stateful Value Factorization in Multi-Agent Reinforce-
ment Learning. In Proceedings of the International Confer-
ence on Autonomous Agents and Multiagent Systems.
NVIDIA. 2024. Introduction to LLM Agents.



Oliehoek, F. A.; and Amato, C. 2016. A Concise Introduc-
tion to Decentralized POMDPs. Springer.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008. Opti-
mal and Approximate Q-value Functions for Decentralized
POMDPs. Journal of Artificial Intelligence Research, 32:
289–353.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in Neural Information Pro-
cessing Systems, 35: 27730–27744.
Qian, C.; Liu, W.; Liu, H.; Chen, N.; Dang, Y.; Li, J.; Yang,
C.; Chen, W.; Su, Y.; Cong, X.; et al. 2024. Chatdev: Com-
municative agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 15174–15186.
Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C. D.; Er-
mon, S.; and Finn, C. 2023. Direct preference optimization:
Your language model is secretly a reward model. Advances
in neural information processing systems, 36: 53728–53741.
Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2020. Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learn-
ing. Journal of Machine Learning Research, 21(178): 1–51.
Samvelyan, M.; Rashid, T.; De Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G.; Hung, C.-M.; Torr, P. H.; Fo-
erster, J.; and Whiteson, S. 2019. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043.
Sarkar, B.; Xia, W.; Liu, C. K.; and Sadigh, D. 2025. Train-
ing language models for social deduction with multi-agent
reinforcement learning. arXiv preprint arXiv:2502.06060.
Shao, Z.; Wang, P.; Zhu, Q.; et al. 2024. DeepSeekMath:
Pushing the Limits of Mathematical Reasoning in Open
Language Models. arXiv:2402.03300.
Shoham, Y.; and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge, UK: Cambridge University Press.
Skreta, M.; Yoshikawa, N.; Arellano-Rubach, S.; Ji, Z.; Kris-
tensen, L. B.; Darvish, K.; Aspuru-Guzik, A.; Shkurti, F.;
and Garg, A. 2023. Errors are Useful Prompts: Instruction
Guided Task Programming with Verifier-Assisted Iterative
Prompting. arXiv:2303.14100.
Stone, P.; and Veloso, M. 2000. Multiagent Systems: A
survey from a machine learning perspective. Autonomous
Robots, 8(3): 345–383.
Subramaniam, V.; Du, Y.; Tenenbaum, J. B.; Torralba, A.;
Li, S.; and Mordatch, I. 2025. Multiagent finetuning: Self
improvement with diverse reasoning chains. arXiv preprint
arXiv:2501.05707.
Tan, M. 1993. Multi-Agent Reinforcement Learning: Inde-
pendent versus Cooperative Agents. In Proceedings of the
Tenth International Conference on Machine Learning, 330–
337. San Francisco, CA, USA: Morgan Kaufmann.
Uesato, J.; Kushman, N.; Kumar, R.; Song, F.; Siegel, N.;
Wang, L.; Creswell, A.; Irving, G.; and Higgins, I. 2022.
Solving math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Van der Hoek, W.; and Wooldridge, M. 2008. Multi-agent
systems. Foundations of Artificial Intelligence, 3: 887–928.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.;
Schrittwieser, J.; et al. 2017. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782.
Wang, B.; Zi, Y.; Sun, Y.; Zhao, Y.; and Qin, B. 2024.
Rkld: Reverse kl-divergence-based knowledge distillation
for unlearning personal information in large language mod-
els. arXiv preprint arXiv:2406.01983.
Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; and Zhang, C. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In Pro-
ceedings of the International Conference on Learning Rep-
resentations.
Weiss, G. 1999. Multiagent systems: a modern approach to
distributed artificial intelligence. MIT press.
Wiering, M. A. 2000. Multi-agent reinforcement learning
for traffic light control. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, 1151–1158.
Stanford, CA, USA: Morgan Kaufmann.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang,
L.; Zhang, X.; Zhang, S.; Liu, J.; Awadallah, A. H.; White,
R. W.; Burger, D.; and Wang, C. 2023a. AutoGen: Enabling
Next-Gen LLM Applications via Multi-Agent Conversation.
Wu, Z.; Hu, Y.; Shi, W.; Dziri, N.; Suhr, A.; Ammanabrolu,
P.; Smith, N. A.; Ostendorf, M.; and Hajishirzi, H. 2023b.
Fine-grained human feedback gives better rewards for lan-
guage model training. Advances in Neural Information Pro-
cessing Systems, 36: 59008–59033.
Xiao, Y.; Tan, W.; Hoffman, J.; Xia, T.; and Amato, C.
2025. Asynchronous Multi-Agent Deep Reinforcement
Learning under Partial Observability. International Journal
of Robotics Research, 35(14): 1760–1778.
Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.;
and Wu, Y. 2022. The Surprising Effectiveness of PPO in
Cooperative Multi-Agent Games. In Thirty-Sixth Confer-
ence on Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track.
Yue, Y.; Chen, Z.; Lu, R.; Zhao, A.; Wang, Z.; Yue, Y.; Song,
S.; and Huang, G. 2025. Does Reinforcement Learning Re-
ally Incentivize Reasoning Capacity in LLMs Beyond the
Base Model? arXiv:2504.13837.
Zhang, K.; Liu, R.; Zhu, X.; Tian, K.; Zeng, S.; Jia, G.; Fan,
Y.; Lv, X.; Zuo, Y.; Jiang, C.; Liu, Z.; Wang, J.; Wang, Y.;
Zhao, R.; Hua, E.; Wang, Y.; Wang, S.; Gao, J.; Long, X.;
Sun, Y.; Ma, Z.; Cui, G.; Bai, L.; Ding, N.; Qi, B.; and Zhou,
B. 2025. MARTI: A Framework for Multi-Agent LLM Sys-
tems Reinforced Training and Inference.
Zhao, P.; Sun, F.; Shen, X.; Yu, P.; Kong, Z.; Wang, Y.; and
Lin, X. 2024. Pruning foundation models for high accuracy
without retraining. arXiv preprint arXiv:2410.15567.
Ziegler, D. M.; Stiennon, N.; Wu, J.; Brown, T. B.; Radford,
A.; Amodei, D.; Christiano, P.; and Irving, G. 2019. Fine-
tuning language models from human preferences. arXiv
preprint arXiv:1909.08593.



Formalizations of Multi-Agent Interaction
Many studies adopt Partially Observable Stochastic Games
(POSG) to model the LLM interaction in MAS (Liu et al.
2025a; Sarkar et al. 2025; Zhang et al. 2025). In this section,
we show that Dec-POMDP offers special merits compared
to POSG in the solution concept in the cooperative settings,
thus more suited to model LLM collaboration.

Dec-POMDP
A Dec-POMDP is defined by ⟨I,S, {Oi}, {Ai}, R, T,H⟩.
At each step t, since an agent cannot directly observe the
state st, it usually maintains local observation-action history
hi,t = (oi,0, ai,0, . . . , oi,t) to infer a belief over the under-
lying state. Decisions are made according to a local policy
πi : Hi,t → ∆(Ai), which maps histories to probability
distributions over actions. The set of all local policies forms
the joint policy π = {π1, . . . , πn}. In cooperative settings,
the objective is to maximize shared cumulative rewards. As
proved in (Oliehoek, Spaan, and Vlassis 2008), there is al-
ways an optimal joint policy in a Dec-POMDP,

π∗ = argmax
π∈Π

Eπ

[
H−1∑
t=0

R(st, at)

]
. (3)

POSG
A Partially Observable Stochastic Game (POSG), so-called
Partially Observable Markov Game (POMG), does not as-
sume cooperative behavior among agents. It can be either
a cooperative, competitive, or mixed game. A POSG is
defined as ⟨I,S, {Ai}, T, {Oi}, O, {Ri}, H⟩, where each
agent has its own reward function Ri : S × A → R. In
POSG, each agent seeks to maximize its individual return
under the fixed policies of all others π−i. The optimal pol-
icy π⊛

i for each agent i ∈ I is,

π⊛
i = argmax

πi∈Πi

Eπi,π−i

[
H−1∑
t=0

Ri(st, at)

]
, (4)

The solutions for POSG are Nash Equilibria (NE), where
no agents can unilaterally improve their returns by deviating
from their policies. Formally, for all i ∈ I and any alterna-
tive policy πi ∈ Πi, NE satisfy

E

[
H−1∑
t=0

Ri(st, at) | π⊛
i ,π

⊛
−i

]
≥ E

[
H−1∑
t=0

Ri(st, at) | πi,π
⊛
−i

]
.

(5)
Like Dec-POMDP, the decision-making in POSG is still

concurrent (as stochastic games), where all agents act syn-
chronously at each time step. In contrast, turn-based interac-
tions, where agents take turns to act (e.g., chess, Kuhn Poker,
tic-tac-toe), are typically modeled as extensive-form games.

Non-Optimality of POSG Solutions
We illustrate that the solutions of POSG, i.e., NE, may not
necessarily lead to joint optimality in cooperative settings.

Consider a one-step matrix game involving 2 agents,
where each agent selects an action from the action space

A = {A(1),A(2)}. The joint action profile determines the
utility as presented in Table 3.

a1\a2 A(1) A(2)

A(1) 10 7
A(2) 7 0

Table 3: Joint utility matrix of 2 agents.

This matrix game can be potentially decomposed into 2
POSG in Table 4 through reward shaping.

a1\a2 A(1) A(2)

A(1) (5, 5) (3, 4)
A(2) (4, 3) (0, 0)

(a) POSG 1

a1\a2 A(1) A(2)

A(1) (5, 5) (1, 6)
A(2) (6, 1) (0, 0)

(b) POSG 2

Table 4: Return tables of 2 POSG.

In the POSG presented in Table 4a, (A(1),A(1)) is
a Nash equilibrium (blue triangle in Figure 4a). When
a1 = A(1), U2(A(1),A(1)) > U2(A(1),A(2)); when a1 =
A(2), U2(A(2),A(1)) > U2(A(2),A(2)). Therefore, the
best response for agent 2 is a⊛2 = A(1). Similarly, since
U1(A(1),A(1)) > U1(A(2),A(1)), we obtain a⊛1 = A(1).
This NE also achieves joint optimality with the maximum
utility 5 + 5 = 10 (red square in Figure 4a).

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Joint Optima

(a) POSG 1

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Probabilistic NE
Joint Optima

(b) POSG 2

Figure 4: Utility spaces of 2 POSG.

However, certain reward decompositions may yield non-
optimal solutions for cooperative games in Table 4, even
when POSG solutions reach NE. For the POSG shown in Ta-
ble 4b, the deterministic NE are (A(1),A(2)), (A(2),A(1))
(blue triangles in Figure 4b). When a1 = A(1), agent 2
prefers A(2) as U2(A(1),A(2)) > U2(A(1),A(1)); when
a1 = A(2), agent 2 prefers A(1) since U2(A(2),A(1)) >
U2(A(2),A(2)). Agent 1 faces the same issue. Thus, neither
agent can unilaterally improve their utilities by deviating.
However, the collective utilities obtained from both policies
yield 6 + 1 = 7 < 10, which are suboptimal compared to
the joint optimum (red square in Figure 4b).

In Table 4b, even the probabilistic NE under stochastic
policies is still non-optimal. Suppose agent 1 selects A(1)



Method Dataset Pass@k (%) Acc@k (%) Coop@k (%)
@3 @5 @10 @3 @5 @10 @3 @5 @10

Single Model HE 67.7 71.0 83.9 85.4 87.9 95.1 – – –
CHE 68.8 75.0 81.3 75.0 81.3 88.8 – – –

Fine-Tuned Single Model HE 69.2 72.9 84.6 83.0 89.2 95.6 – – –
CHE 69.4 74.5 83.7 74.3 82.2 90.3 – – –

Naive Concatenation HE 45.2 51.6 64.5 70.4 75.5 80.9 49.5 67.7 76.3
CHE 43.8 56.3 68.8 57.0 63.8 73.8 47.9 69.3 81.3

Sequential Pipeline HE 56.8 61.3 71.0 78.8 84.5 91.9 62.4 73.3 92.7
CHE 75.0 81.5 87.5 88.2 89.5 91.3 75.0 75.0 81.3

One-Round Discussion HE 51.6 61.3 71.0 71.8 81.3 87.5 58.1 70.0 78.7
CHE 50.0 68.8 68.8 75.4 82.5 82.0 66.7 68.7 75.0

Single-Turn MAGRPO (Ours) HE 64.8 68.1 71.0 75.3 76.3 86.4 83.8 90.3 90.3
CHE 75.0 75.0 81.2 80.0 82.5 87.5 87.5 93.8 93.8

Multi-Turn MAGRPO (Ours) HE 71.0 80.6 90.3 85.7 92.6 94.7 93.5 96.8 96.8
CHE 75.0 81.5 87.5 86.4 92.5 95.4 93.8 96.8 100.0

Table 5: Performance comparison between MAGRPO and baseline methods with pass@k, acc@k, coop@k, on HE and CHE.
The bold texts indicate the best performance of each metric on each dataset.

with probability p, and agent 2 selects A(1) with probability
q, R1(A(1), ·) = 5q + (1 − q) = 4q + 1, R1(A(2), ·) =
6q, R1(A(1), ·) = R1A(2), ·) yields q = 0.5; similarly,
R2(·,A(1)) = 5p + (1 − p) = 4p + 1, R2(·,A(2)) = 6p,
R2(A(1), ·) = R2A(2), ·) yields p = 0.5. This probabilistic
NE, π⊛

1 (A(1)) = π⊛
1 (A(2)), π⊛

2 (A(1)) = π⊛
2 (A(2)) leads to

overall utilities 3+ 3 = 6 < 10 (orange circle in Figure 4b).
Although appropriate reward shaping techniques can

transform a cooperative game into a POSG like Table 4a
to make the NE also jointly optimal, this becomes more
challenging when more agents are involved and episodes be-
come longer. We employ Dec-POMDP to avoid the intricate
reward engineering and seek the joint optimality.

Additional Results
We report additional results in this section to validate the
effectiveness of our approach.

@k Ablation
In LLMs, single-run inference often leads to high variance.
To provide a more reliable evaluation of the capacities (Yue
et al. 2025), we evaluate the pass, test accuracy, and cooper-
ation at k runs (pass@k, acc@k, and coop@k) on MAGRPO
and baselines. These @k metrics measure the best outcome
among k generated solutions for each problem and are aver-
aged over all problems in D.

Pass@k is calculated as the probability that at least one
out of k generated solutions passes all test cases (Chen
2021). Specifically, a set P of k solutions is randomly sam-
pled from a pool ofM generated solutions. To make it con-
sistent with other @k metrics, we express pass@k as,

Pass@k =
1

|D|

|D|∑
j=1

EP∼Sample(M,k)

[
max
p∈P

1(npass
j = nj)

]
,

(6)

where 1(npass
j = nj) is the indicator function that equals 1

if all test cases are passed in problem j (i.e., the number of
passed tests npass

j equals the total number of tests nj), and 0
otherwise.

However, pass@k does not offer a fine-grained assess-
ment of solution quality, as functional correctness is repre-
sented as a binary variable. As a result, failing a single test
case is treated the same as failing all in pass@k. To provide
a more unbiased evaluation, we use accuracy@k, defined as
the highest test accuracy among the k generated solutions,
averaged across all problems.

Acc@k =
1

|D|

|D|∑
j=1

EP∼Sample(M,k)

[
max
p∈P

npass
j

nj

]
, (7)

where npass
j and nj are the number of passed and total unit

tests of problem j, and npass
j /nj is the test accuracy.

Similar to acc@k, we also propose coop@k, which mea-
sures the average of the highest normalized cooperation re-
turn achieved among k runs across all problems. Formally,
the Coop@k is defined as,

Coop@k =
1

|D|

|D|∑
j=1

EP∼Sample(M,k)

[
max
p∈P

Rcoop
p

]
, (8)

where Rcoop
p =

∑H−1
t=0 rcoop

p,t is the cooperation return over
horizon H , and rcoop

p,t denotes the cooperation reward ob-
tained by solution p at turn t.

We generate 15 samples in M and evaluate all meth-
ods with k = 10. Table 5 presents the results for pass@k,
acc@k, and coop@k at k = 3, 5, 10, comparing MAGRPO
with baseline methods. As expected, the trends in @k met-
rics are consistent with the @1 results. By fine-tuning with
GRPO, the pass@k, acc@k, and coop@k are slightly im-
proved. The naive concatenation method remains worse than
the single-agent baseline in terms of pass@k, as the main
agent may generate code based on incorrect assumptions



about the auxiliary function. The sequential pipeline mit-
igates this issue by allowing the main agent to reference
the auxiliary output during generation, yielding substantial
improvements across all @k metrics, particularly on CHE.
Although the one-round discussion method shares the same
prompts as naive concatenation in the first turn, the addi-
tional discussion round yields limited improvement across
the @k metrics due to misalignment in cross-adaptation.

Multi-turn MAGRPO outperforms all baselines across
most @k metrics by leveraging feedback from external
sources. These more comprehensive experiments further
validate the general effectiveness of our approach and high-
light promising directions for future work, such as training
LLMs through interactions with static analyzers, sandbox-
based evaluations, or expert models. Notably, the acc@k
metric offers a more fine-grained perspective on perfor-
mance trends as k varies. In some cases, slightly increasing
k may not yield additional solutions that pass all test cases
(as measured by pass@k), yet the improvement is still cap-
tured through higher accuracy.

Cooperation Schemes

By training the auxiliary and main coders to cooperate un-
der minimal constraints (with only the problem descrip-
tion and their respective roles provided), diverse coopera-
tion schemes naturally emerge. We present 4 representative
schemes observed in our models.

Fallback A commonly observed cooperation scheme is
the main agent providing a fallback for the auxiliary func-
tion. Although prompted to use the auxiliary output, the
main agent may still doubt its completeness and reimple-
ment the solution as a backup in case of potential errors.

For example, the problem compare one(a,b) asks to
return the larger of 2 values in its original type (string, float,
or int), or None if equal. Listing 1 demonstrates how the
fallback mechanism provides an alternative in case of run-
time errors in the auxiliary implementation. The aux(x,y)
function converts variable x to a float, resulting in an
operand type mismatch if y is a string. The main agent
handles the type error by falling back to its secondary im-
plementation. While the main implementation may still be
vulnerable, this mechanism benefits small models that com-
monly encounter syntax and runtime errors. Despite some
redundancy, a proper fallback can enhance code robustness.

Decorator

When the main agent trusts the auxiliary to accurately han-
dle the core logic, it typically acts as a decorator, adding
complementary features to enhance the output. The main
agent could handle edge cases for improved robustness or
reformat the outputs (e.g., sorting, rounding, and adjusting
units). The necessity of such decorating logic depends on
the auxiliary agent’s functionality and completeness.

Listing 1: compare one(a,b)

1 def aux(x, y):
2 # Convert x to a float
3 if isinstance(x, str):
4 x = float(x.replace(",", "."))
5
6 # Vulnerable if y in different types
7 if x < y:
8 return y
9 else:

10 return x
11
12 def compare_one(a, b):
13 try:
14 return aux(a, b)
15 except Exception:
16 # Robust implementation
17 if type(a) == type(b):
18 if a > b:
19 return a
20 elif a < b:
21 return b
22 else:
23 return None
24 elif type(a) == float and type(b)

== str:
25 b_float = float(b.replace(",",

"."))
26 if a > b_float:
27 return a
28 elif a < b_float:
29 return b_float
30 else:
31 return None
32 elif type(a) == str and type(b) ==

float:
33 a_str = str(a.replace(",", "

."))
34 a_float = float(a_str)
35 if a_float > b:
36 return a_str
37 elif a_float < b:
38 return b
39 else:
40 return None
41 else:
42 return None

Listing 2 illustrates a decorator main function and how its
utility varies depending on the completeness of the auxiliary
implementation. In this problem, 2 agents generate codes
together to check if a given string is a palindrome. When
paired with aux1 that only handles the recursion bound-
ary condition of single-character strings, the empty string
check of the main serves as a necessary edge case handler.
However, when working with aux2, which already has a
more comprehensive edge case consideration, this handle
becomes redundant.

Coordinator In large-scale software systems, it would be
beneficial to have pipelines for repeated or data-parallel
operations (e.g., batch processing, stream transformations).
This corresponds to the coordinator cooperation scheme in



our models, where the main agent divides the tasks into parts
and assigns them to the auxiliary agent.

A simple example involves the main agent acting as an
iterator, using a loop (e.g., a for loop) to structure the
problem. The auxiliary function generates partial solutions
within each iteration. These partial results are then aggre-
gated to form the final output. However, this cooperation
scheme is unstable, as it depends heavily on the correct func-
tionality of the auxiliary agent. When the auxiliary agent
fails to complete its subtask, the entire solution breaks down.

Listing 2: is palindrome(text)

1 def aux1(text):
2 if len(text) == 1:
3 return True
4 return text[0] == text[-1] and aux1(

text[1:-1])
5
6 def aux2(text):
7 if len(text) <= 1:
8 return True
9 return text[0] == text[-1] and aux2(

text[1:-1])
10
11 def is_palindrome(text):
12 if not text:
13 return True
14
15 # Edge case handler
16 return aux1(text)
17
18 # Redundant decorator
19 return aux2(text)

Listing 3: flip case(string)

1 def aux(string: str) -> str:
2 result = ""
3 for char in string:
4 if char.islower():
5 result += char.upper()
6 elif char.isupper():
7 result += char.lower()
8 else:
9 result += char

10 return result
11
12 def flip_case(string: str):
13 flipped = ""
14 for char in string:
15 flipped += aux(char)
16 return flipped

Listing 3 demonstrates a solution to flip the case of char-
acters in a string. The auxiliary function flips the case of
each character, while the main function calls this auxiliary
function for each character and appends it to the result. This
scheme can be extended to more complex scenarios, where
subtasks are assigned in a hierarchical structure.

Strategy Filter When handling complex problems, the
main agent may need to implement logic based on multi-
ple conditions. In such cases, the auxiliary agent can act as
a filter for specific branches of logic, often appearing within
conditional blocks (e.g., following an if statement). This
scheme resembles the adaptive control flow in practice. In
rule-based pipelines, an auxiliary agent evaluates precon-
ditions (e.g., task types, system status, configurations) and
directs workers to execute appropriate subroutines, thereby
enhancing project modularity.

Listing 4: x or y(n,x,y)

1 def aux(n):
2 if n < 2:
3 return False
4 if n == 2:
5 return True
6 if n % 2 == 0:
7 return False
8 for i in range(3, int(n**0.5) + 1,

2):
9 if n % i == 0:

10 return False
11 return True
12
13 def x_or_y(n, x, y):
14 # Check if n is prime
15 if aux(n):
16 return x
17 else:
18 return y

Listing 4 presents a solution for x or y(n,x,y)
problem, which returns x if n is prime and y other-
wise. The auxiliary function handles the primality check-
ing, while the main function is responsible for return-
ing results. The same pattern can also be found in
the solutions of prime fib(n), factorize(n), and
largest prime factor(n).

Learning Modes
Figure 5 shows the reward curves of total returns in a 2-turn
MAGRPO training with 2 different learning modes.

0 0.5 1.0 1.5 2.0
(K) Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l R
ew

ar
ds

Turn 1
Turn 2

(a) Self-Improvement

0 0.5 1.0 1.5 2.0
(K) Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l R
ew

ar
ds

Turn 1
Turn 2

(b) Guided-Learning

Figure 5: Learning modes in 2-turn MAGRPO training.

Figure 5a demonstrates a self-improvement mode, where
agents interact with the tasks themselves and do not have



access to the external feedback. At each turn t, the prompts
are just prompts and responses from the previous turns and a
revision instruction. Although both curves improve as agents
gradually develop cooperative behaviors, the performance of
the second turn is still consistently similar to the first turn,
suggesting that learning is primarily driven by direct task
interaction.

Figure 5b illustrates the reward curves of guided-learning
mode, where LLMs leverage external feedback to improve
performance, e.g., feedback from expert agents, diagnosis
from static checkers like AST, and sandbox tests. When em-
ploying Claude-Sonnet-4 as an external model to provide
more concrete suggestions or feeding error messages from
sandbox tests, the performance of the second turn (red) ex-
ceeds first turn (blue), and both outperform those in the
self-improvement. This indicates that appropriate guidance
helps agents to refine the response in an efficient way. Due
to the computational constraints, most models used in our
setup have around 3B parameters and may struggle to inter-
pret more abstract suggestions. We hypothesize that larger
models with higher reasoning capabilities could benefit from
more implicit guidance.

Experimental Configurations
This section outlines the hyperparameter settings and reward
specifications used in our experiments.

Hyperparameters
For writing collaboration, we set the temperature to 0.8 and
apply nucleus sampling with a threshold of 0.95 to encour-
age diverse generation. Policy deviation is regularized using
a beta value of 0.02. The policy is optimized using a learning
rate of 5× 10−6, and training is conducted for 1,500 steps.

For coding collaboration, the single-turn MAGRPO train-
ing uses a temperature of 0.7 and nucleus sampling with a
threshold of 0.9. The learning rate is set to 1 × 10−6, with
1,500 training steps. In the multi-turn setting, the discount
factor is set to 1.0, and the learning rate is 5 × 10−6, with
2,200 training steps.

Reward Specifications
Rewards are computed as a weighted sum of multiple
metric-based components, following a hierarchical reward
modeling scheme to prioritize fundamental objectives.

TLDR Summarization

• Structural Wellness: The structural wellness is assessed
by the ratios of paragraph length and unique words. For
the completion length, an appropriate ratio within 1.6-
3.2× receives the full rewards; ratios within the range of
1.1-5.0× receive proportional rewards; while ratios out-
side receive no rewards and early termination of evalua-
tion. For the ratio of unique words, we exclude the com-
mon stopwords. A ratio of 2.0× or higher receives the
maximum rewards; ratios between 1.3-2.0× receive pro-
portional rewards; ratios below 2.0× result in no rewards
and evaluation termination.

• Style Consistency: The style consistency is measured
through Jaccard similarity of vocabulary between the
completions (excluding stopwords). The Jaccard similar-
ity scores are capped at 0.03 and normalized as rewards.
We use a cap here to balance the needs of maintaining
lexical consistency and vocabulary expansion in elabo-
rated summarization.

• Logical Coherence: The logical coherence is evaluated
through the presence and diversity of transition words
in the completions. We check transition words across 12
categories, e.g., examples, explanation, contrast, etc. Ad-
ditional rewards are given for using transition words in
more categories, where r = min(0.6 log(n+ 1), 1), and
n is the number of transition categories.

arXiv Expansion
• Structural Wellness: This metric evaluates the relative

length and lexical diversity between the second and first
completions. A length ratio within the optimal range
of 1.0–1.3× yields the maximum rewards, while ratios
within the acceptable bounds of 0.8–1.5× receive pro-
portionally scaled rewards. Ratios outside this range re-
sult in zero reward and early termination. Similarly, a
unique word ratio within 0.7–1.3× receives the full re-
wards, ratios within 0.5–1.7× are rewarded proportion-
ally, and values outside this range lead to zero reward
and evaluation termination.

• Style Consistency: Style consistency is quantified using
Jaccard similarity between the 2 completions. The simi-
larity score is capped at 0.23 and normalized as rewards.

• Logical Coherence: Logical coherence is assessed based
on the presence of transition words across 12 categories.
Additional rewards are given for using transition words
in more categories, where r = min(0.4 log(n + 1), 1),
and n is the number of transition categories.

Coding Collaboration
• Structural Integrity: This metric verifies the correct im-

plementation of both the auxiliary and main functions. To
receive the base reward, the corresponding functions in
the agents’ completions must be properly defined and in-
clude return statements. Failure to define the main func-
tion results in evaluation termination.

• Syntactical Correctness: This metric assesses the syn-
tactic validity of the concatenated code, which includes
the libraries provided in the dataset, the auxiliary func-
tion defined by the helper agent, and the function de-
fined by the main agent. Syntactic correctness is verified
via static analysis, i.e., Abstract Syntax Tree (AST). The
presence of syntax errors leads to the termination of the
evaluation to avoid runtime failures.

• Test Pass Rate: This metric measures the percentage of
unit tests passed during execution, with each test sub-
ject to a 10-second timeout. Rewards are assigned pro-
portionally based on the number of successful assertions.
If no tests pass, the evaluation is terminated.

• Cooperation Quality: A base bonus is applied if the
main function calls the auxiliary. Additional rewards are



given when the main function implements substantive
logic beyond simply wrapping the auxiliary.

Prompt Design
Writing Collaboration
TLDR In the TLDR summarization, the prompt field of
the dataset is processed for each agent by using the following
instructions.

Summary Agent
Create a concise summary response to

this post.
Query: {prompt}
Instructions: Provide a brief and

focused summary in a few sentences

Elaboration Agent
Create a detailed summary response to

this post.
Query: {prompt}
Instructions: You should use transition

words to improve flow

arXiv In the arXiv paragraph expansion, we use the
abstract field of the dataset and process it as follows.

Background Agent
Based on the following scientific

abstract, expand the content for the
introduction section.

Abstract: {abstract}
Instructions:
- There is another agent that will

provide the method and implications
- You just need to focus on the

background and motivation
- Avoid repeating methodology and

implications content

Method Agent
Based on the following scientific

abstract, expand the content for the
introduction section.

Abstract: {abstract}
Instructions:
- There is another agent that will

provide the background and motivation
- You just need to focus on the method

and implications
- Avoid repeating background and

motivation content

Coding Collaboration
For HE and CHE, we extract the entry point, params
from the prompt field and instruct agents as follows.

Auxiliary Agent
Create a helper function for this coding

problem.
Problem: {prompt}
Instructions:
- Output ONLY the function code, no

explanations or examples

- Do NOT include markdown code blocks
(‘‘‘python)

- Do NOT include any text before or
after the function

- Do NOT include test cases or example
usage

- Create a helper function named ’aux’
that can assist the main function

- The function should return useful data
for solving the problem

Your output should follow this format:
def aux(...):

# your code here
return result

Main Agent
Solve this coding problem by

implementing the required function.
Problem: {prompt}
You have access to a helper function:

aux(...)

Instructions:
- Output ONLY the function code, no

explanations or examples
- Do NOT include markdown code blocks

(‘‘‘python)
- Do NOT include any text before or

after the function
- Do NOT include test cases or example

usage
- Do NOT redefine the aux() function
- Implement ONLY the ’{entry_point}’

function as specified
- You can call aux() to assign a value

to a variable within your function if
helpful

Your output should follow this format:
def {entry_point}({params}):\n # your

function code here\nreturn result\n

To improve the generated code, these prompts are used to
construct second-turn observations for the MAS with sug-
gestions from Claude-Sonnet-4.

External Agent
You are an advisor helping 2 agents (an

auxiliary agent and a main agent)
solve the following problem. The
auxiliary agent provides a helper
function (aux), while the main agent
defines the task-specific logic.

Problem: {prompt}
Example tests: {test}
Show your feedback and edits for the

following code: {combined_code}

Instructions:
- If you identify a missing element,

such as an undefined aux or missing
entry point (main function), you
should write one for it.

- If both are not missing, point out and



make changes to any critical syntax
or logic errors that would prevent
the code from passing the given unit
tests.

- You should focus only on clear errors
on the given unit tests, be
conservative and lenient, ignoring
issues like redundancy, inefficiency,
lack of edge case handling, or type

annotations.
- Return "Perfect! No edits needed!" if

the logic is sound.

Your response MUST contain the JSON
format specified below. Always
include both ’aux’ and ’main’ fields,
even if no edits are needed.

{ "aux": {{...}}, "main": {{...}}}

Baseline Methods
We adopt a single-agent method and 3 representative multi-
agent conversation methods as baselines.

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to 
solve prime_fib(n) 
that returns n-th 
number that is a 
Fibonacci and prime.

def prime_fib(n):
    . . .
    return res

Write a function to 
solve prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime. You can call an 
aux function for your 
implementation.

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Figure 6: Single-agent code generation.

Figure 6 illustrates the code generation process using a
single LLM agent. In this setting, the user gives a cod-
ing question along with specific instructions. The agent re-
sponds by generating a Python function snippet to solve it.

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to 
solve prime_fib(n) 
that returns n-th 
number that is a 
Fibonacci and prime.

def prime_fib(n):
    . . .
    return res

Write a function to 
solve prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime. You can call an 
aux function for your 
implementation.

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Figure 7: Coding collaboration via naive concatenation.

Naive concatenation represents the simplest form of co-
operation, where 2 agents generate code synchronously, as
illustrated in Figure 7. The first agent is provided with the
coding question and informed of its role as a helper. The sec-
ond agent is given the same question, along with its role as
the main generator and the fact that an auxiliary agent exists.

However, the main agent lacks information about the spe-
cific functionality of the auxiliary agent. Their outputs are
directly concatenated to form the response. This method is
intended to improve inference efficiency by enabling a sim-
ple division of the problem into separate parts.

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to 
solve prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime. You can call an 
aux function for your 
implementation.

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to solve 
prime_fib(n) that returns 
n-th number that is a 
Fibonacci and prime. 

You should call this aux 
function:
def aux(. . .): . . .

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Write an aux function to 
help to solve prime_fib(n) 
that returns n-th number 
that is a Fibonacci and 
prime. 

You were called by this 
function:
def prime_fib(n): . . .

def aux(. . .):
    . . .
    return res

Write a function to solve 
prime_fib(n) that returns 
n-th number that is a 
Fibonacci and prime. 

You called this aux 
function:
def aux(. . .): . . .

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Figure 8: Coding collaboration via sequential pipeline.

Figure 8 presents the form of pipeline cooperation, where
agents respond in sequence. The first agent is given the cod-
ing question along with the role of a helper. Its response is
then passed to the main agent as a reference. The main agent
generates its answer by incorporating the helper’s response.
This method enables one-way communication, allowing the
main agent to respond by coordinating with the helper. How-
ever, this comes at the cost of slower inference speed due to
the sequential nature of the interaction.

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to 
solve prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime. You can call an 
aux function for your 
implementation.

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Write an aux function 
to help to solve 
prime_fib(n) that 
returns n-th number 
that is a Fibonacci and 
prime.

def aux(. . .):
    . . .
    return res

Write a function to solve 
prime_fib(n) that returns 
n-th number that is a 
Fibonacci and prime. 

You should call this aux 
function:
def aux(. . .): . . .

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Write an aux function to 
help to solve prime_fib(n) 
that returns n-th number 
that is a Fibonacci and 
prime. 

You were called by this 
function:
def prime_fib(n): . . .

def aux(. . .):
    . . .
    return res

Write a function to solve 
prime_fib(n) that returns 
n-th number that is a 
Fibonacci and prime. 

You called this aux 
function:
def aux(. . .): . . .

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Figure 9: Coding collaboration with one-round discussion.



Discussion or debate frameworks (Figure 9) aim to im-
prove response quality by enabling agents to access each
other’s previous outputs (Du et al. 2023; Liang et al. 2024).
In the first turn, the helper and main agents generate re-
sponses in the same manner as the naive concatenation ap-
proach. These initial responses are then shared with each
other as references for the following turns, forming a dis-
cussion. Although this setup introduces more interaction, it
does not guarantee improved response quality. With a lim-
ited number of rounds, the final output may not converge to a
coherent solution. Even with additional rounds, convergence
remains uncertain. This approach can even be less efficient
than the sequential pipeline, particularly in distributed sys-
tems where communication latency is high or unreliable.

Write an aux 
function to help to 
solve . . .

def aux(. . .):
    . . .
    return res

Write a function to solve 
. . . You can call an aux 
function for your 
implementation.

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Write an aux function to 
help to solve . . . 

Here are your response:
def aux(. . .): . . . 

Here are edit suggestions 
from an expert:
”No edits needed”

def aux(. . .):
    . . .
    return res

Write a function to solve . . . 
You can call an aux function 
for your implementation.

Here are your response: 
def  prime_fib(n): . . .

Here are edit suggestions 
from an expert:
”While True -> While c < n”

def prime_fib(n):
    . . .
    aux(. . .)
        . . .
    return res

Figure 10: Coding collaboration in our method.

The interaction process between 2 agents trained with
MAGRPO is illustrated in Figure 10. In the single-turn set-
ting, we use the same prompts as in the naive concatena-
tion baseline. In the multi-turn setting, after the helper and
main agents generate their initial responses, these outputs
are reviewed by an external agent. In this work, we employ
Claude-Sonnet-4 as an external to provide edit suggestions.
For each agent, the suggestions, as well as the prior infor-
mation and their previous response, are incorporated into the
prompt for the subsequent round.

Note that the baselines above can also be fine-tuned by
MARL. However, the interactions among agents in these
settings are not strictly cooperative, which may lead to in-
stability during training. To address this, techniques such as
role-based rewards (Liu et al. 2025a), partial MAS training
(Estornell et al. 2025), and freezing selected agents (Subra-
maniam et al. 2025) can be employed to ensure stable opti-
mization.

Broader Impacts
Prompt-based coordination is often brittle (Estornell and Liu
2024), as agents may fail to follow instructions they were not

explicitly trained to interpret. Our method builds on a solid
theoretical foundation in cooperative MARL, explicitly opti-
mizing agents for joint optimality. Our work also opens op-
portunities to enhance existing test-time multi-agent inter-
action methods by integrating MARL techniques (Du et al.
2023; Lifshitz, McIlraith, and Du 2025; Wu et al. 2023a),
particularly in settings that involve task decomposition and
iterative feedback integration.

This work also explores a new perspective on accelerating
LLM inference through cooperative MARL. While main-
stream acceleration techniques (e.g., knowledge distillation,
pruning, and quantization) improve efficiency at the cost of
information loss (Wang et al. 2024; Zhao et al. 2024), our ap-
proach suggests decentralized coordination among special-
ized agents, thereby alleviating the burden of long-context
memory and joint decision-making on a single model. Each
agent can focus on a specific subtask, enabling more modu-
lar and robust reasoning.

Limitations and Future Works
Nevertheless, this study is subject to several limitations:
1. First, we focus on homogeneous agents for simplicity, as-

suming they perform similar tasks despite being assigned
different roles, e.g., both the auxiliary agent and main
agent are generating Python functions. Future research
could explore LLM collaboration among heterogeneous
agents with diverse capabilities and functionalities.

2. Due to computational constraints, we train LLMs with
MAGRPO on limited datasets using relatively small-
scale language models in a short horizon. When LLM-
based coding agents are deployed in larger-scale projects
involving multiple files and modules, more diverse and
complex cooperation schemes are likely to emerge,
which would further demonstrate the potential of decen-
tralized coordination in MAS.

3. The simplicity of our reward model inevitably leads
to narrow reward signals and potential reward hack-
ing. As suggested by many research studies and in-
dustrial practice (Uesato et al. 2022; Wu et al. 2023b;
Anthropic 2023), designing more expressive and fine-
grained reward models (e.g., multi-aspect rewards,
process-supervised rewards) is essential for better align-
ing agent cooperation with human preferences.

Compute Resources
We use NVIDIA H200 and H100 GPUs for LLM fine-
tuning, and a standalone NVIDIA GeForce RTX 5090 work-
station for inference. Here are the specifications of the re-
sources used for experiments.

Training Devices
Type: GPU Cluster
CPU: Intel Xeon Platinum 8558
GPU: 1x NVIDIA H200

Inference Device
Type: Standalone Workstation
CPU: AMD Ryzen 9 9950X
GPU: 2x NVIDIA GeForce RTX 5090



The training process requires approximately 5 hours to
complete 700 steps and 8 hours to complete 1000 steps.
The inference takes approximately 0.5 hours for each 15-
generation evaluation. Noted that training duration may vary
considerably due to the node condition and the stochasticity
of LLM outputs.

Codes and Datasets
Codes We developed an open-source library, CoMLRL,
for training multiple LLMs to collaborate using MARL.
CoMLRL provides configurable implementations of vari-
ous MARL algorithms for LLM collaboration, including
MAGRPO. The experiments of this paper serve as parts of
CoMLRL’s environments and benchmarks.

• OpenMLRL/CoMLRL:
https://github.com/OpenMLRL/CoMLRL

• OpenMLRL/LLM Collab Writing:
https://github.com/OpenMLRL/LLM Collab Writing

• OpenMLRL/LLM Code Generation:
https://github.com/OpenMLRL/LLM Collab Code
Generation

• OpenMLRL/LLM Code Completion:
https://github.com/OpenMLRL/LLM Collab Code
Completion

We hope that this library and the associated experiment
repositories will lay a foundation and provide convenient
tools for future research and development in LLM collab-
orations.

Datasets The datasets used in our experiments are all
open-sourced and available online,

• trl-lib/TLDR:
https://huggingface.co/datasets/trl-lib/tldr

• mattbierbaum/arXiv:
https://github.com/mattbierbaum/arxiv-public-datasets

• OpenAI/humanevalHumanEval:
https://huggingface.co/datasets/openai/openai
humaneval

• OpenMLRL/CoopHumanEval:
https://huggingface.co/datasets/OpenMLRL/
CoopHumanEval


